Some traits updates + added missing tests for products on RGSWCt

This commit is contained in:
Jean-Philippe Bossuat
2025-05-12 14:40:17 +02:00
parent e38ca404f9
commit d8a7d6cdaf
9 changed files with 2295 additions and 1914 deletions

View File

@@ -1,504 +1,499 @@
#[cfg(test)]
mod tests {
use base2k::{FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut};
use sampling::source::Source;
use crate::{
elem::{FromProdBy, FromProdByScratchSpace, Infos, ProdBy, ProdByScratchSpace},
grlwe::GRLWECt,
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECtDft, RLWEPt},
test_fft64::{grlwe::noise_grlwe_rlwe_product, rgsw::noise_rgsw_rlwe_product},
};
#[test]
fn encrypt_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_ct, rows);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
(0..ct.rows()).for_each(|row_i| {
ct.get_row(&module, row_i, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_scalar, 0);
let std_pt: f64 = pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
});
module.free();
}
#[test]
fn from_prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s2.size())
| GRLWECt::from_prod_by_grlwe_scratch_space(
&module,
ct_grlwe_s0s2.size(),
ct_grlwe_s0s1.size(),
ct_grlwe_s1s2.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s0s2.from_prod_by_grlwe(&module, &ct_grlwe_s0s1, &ct_grlwe_s1s2, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s1.size())
| GRLWECt::prod_by_grlwe_scratch_space(&module, ct_grlwe_s0s1.size(), ct_grlwe_s1s2.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s0s1.prod_by_grlwe(&module, &ct_grlwe_s1s2, scratch.borrow());
let ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = ct_grlwe_s0s1;
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn from_prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_in: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_out: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_grlwe: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_in.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_out.size())
| GRLWECt::from_prod_by_rgsw_scratch_space(
&module,
ct_grlwe_out.size(),
ct_grlwe_in.size(),
ct_rgsw.size(),
)
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size()),
);
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
pt_grlwe.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_in.encrypt_sk(
&module,
&pt_grlwe,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_(m) (x) RGSW_(X^k) = GRLWE_(m * X^k)
ct_grlwe_out.from_prod_by_rgsw(&module, &ct_grlwe_in, &ct_rgsw, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
module.vec_znx_rotate_inplace(k as i64, &mut pt_grlwe, 0);
(0..ct_grlwe_out.rows()).for_each(|row_i| {
ct_grlwe_out.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_grlwe, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_grlwe: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe.size())
| GRLWECt::prod_by_rgsw_scratch_space(&module, ct_grlwe.size(), ct_rgsw.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size()),
);
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
pt_grlwe.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe.encrypt_sk(
&module,
&pt_grlwe,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_(m) (x) RGSW_(X^k) = GRLWE_(m * X^k)
ct_grlwe.prod_by_rgsw(&module, &ct_rgsw, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
module.vec_znx_rotate_inplace(k as i64, &mut pt_grlwe, 0);
(0..ct_grlwe.rows()).for_each(|row_i| {
ct_grlwe.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_grlwe, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
use base2k::{FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut};
use sampling::source::Source;
use crate::{
elem::{GetRow, Infos, ProdInplace, ProdInplaceScratchSpace, ProdScratchSpace, Product},
grlwe::GRLWECt,
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECtDft, RLWEPt},
test_fft64::rgsw::noise_rgsw_product,
};
#[test]
fn encrypt_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_ct, rows);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
(0..ct.rows()).for_each(|row_i| {
ct.get_row(&module, row_i, 0, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_scalar, 0);
let std_pt: f64 = pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
});
module.free();
}
#[test]
fn from_prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s2.size())
| GRLWECt::prod_by_grlwe_scratch_space(
&module,
ct_grlwe_s0s2.size(),
ct_grlwe_s0s1.size(),
ct_grlwe_s1s2.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s0s2.prod_by_grlwe(&module, &ct_grlwe_s0s1, &ct_grlwe_s1s2, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, 0, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s1.size())
| GRLWECt::prod_by_grlwe_inplace_scratch_space(&module, ct_grlwe_s0s1.size(), ct_grlwe_s1s2.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s0s1.prod_by_grlwe_inplace(&module, &ct_grlwe_s1s2, scratch.borrow());
let ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = ct_grlwe_s0s1;
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, 0, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn from_prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_in: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_out: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_grlwe: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_in.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_out.size())
| GRLWECt::prod_by_rgsw_scratch_space(
&module,
ct_grlwe_out.size(),
ct_grlwe_in.size(),
ct_rgsw.size(),
)
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size()),
);
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
pt_grlwe.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_in.encrypt_sk(
&module,
&pt_grlwe,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_(m) (x) RGSW_(X^k) = GRLWE_(m * X^k)
ct_grlwe_out.prod_by_rgsw(&module, &ct_grlwe_in, &ct_rgsw, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
module.vec_znx_rotate_inplace(k as i64, &mut pt_grlwe, 0);
(0..ct_grlwe_out.rows()).for_each(|row_i| {
ct_grlwe_out.get_row(&module, row_i, 0, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_grlwe, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_grlwe: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe.size())
| GRLWECt::prod_by_rgsw_inplace_scratch_space(&module, ct_grlwe.size(), ct_rgsw.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size()),
);
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
pt_grlwe.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe.encrypt_sk(
&module,
&pt_grlwe,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_(m) (x) RGSW_(X^k) = GRLWE_(m * X^k)
ct_grlwe.prod_by_rgsw_inplace(&module, &ct_rgsw, scratch.borrow());
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
module.vec_znx_rotate_inplace(k as i64, &mut pt_grlwe, 0);
(0..ct_grlwe.rows()).for_each(|row_i| {
ct_grlwe.get_row(&module, row_i, 0, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_grlwe, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[allow(dead_code)]
pub(crate) fn noise_grlwe_rlwe_product(
n: f64,
log_base2k: usize,

View File

@@ -1,95 +1,582 @@
#[cfg(test)]
mod tests {
use base2k::{
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScratchOwned, Stats, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, ZnxZero,
};
use sampling::source::Source;
use base2k::{
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScratchOwned, Stats, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, VecZnxToMut, ZnxViewMut, ZnxZero,
};
use sampling::source::Source;
use crate::{
elem::{GetRow, Infos},
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECt, RLWECtDft, RLWEPt},
test_fft64::rgsw::noise_rgsw_rlwe_product,
};
use crate::{
elem::{GetRow, Infos, ProdInplace, ProdInplaceScratchSpace, ProdScratchSpace, Product},
grlwe::GRLWECt,
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECtDft, RLWEPt},
test_fft64::grlwe::noise_grlwe_rlwe_product,
};
#[test]
fn encrypt_rgsw_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
#[test]
fn encrypt_rgsw_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_ct, rows);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut ct: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_ct, rows);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct.size());
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct.size());
(0..ct.cols()).for_each(|col_j| {
(0..ct.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_scalar, 0);
(0..ct.cols()).for_each(|col_j| {
(0..ct.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_scalar, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
ct_rlwe_dft.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let std_pt: f64 = pt_have.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
let std_pt: f64 = pt_have.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
pt_want.data.zero();
});
pt_want.data.zero();
});
});
module.free();
}
module.free();
}
#[allow(dead_code)]
pub(crate) fn noise_rgsw_rlwe_product(
#[test]
fn from_prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rgsw_in: usize = 45;
let log_k_rgsw_out: usize = 45;
let rows: usize = (log_k_rgsw_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw_in: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_in, rows);
let mut ct_rgsw_out: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_out, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_rgsw_out.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw_in.size())
| RGSWCt::prod_by_grlwe_scratch_space(
&module,
ct_rgsw_out.size(),
ct_rgsw_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_in.encrypt_sk(
&module,
&pt_rgsw,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_out.prod_by_grlwe(&module, &ct_rgsw_in, &ct_grlwe, scratch.borrow());
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rgsw_out);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_out);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_out.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_out.size());
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_out);
(0..ct_rgsw_out.cols()).for_each(|col_j| {
(0..ct_rgsw_out.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk0_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_out.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.2,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
module.free();
}
#[test]
fn from_prod_by_grlwe_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rgsw: usize = 45;
let rows: usize = (log_k_rgsw + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw, rows);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_rgsw.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| RGSWCt::prod_by_grlwe_inplace_scratch_space(&module, ct_rgsw.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.prod_by_grlwe_inplace(&module, &ct_grlwe, scratch.borrow());
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rgsw);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw.size());
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw);
(0..ct_rgsw.cols()).for_each(|col_j| {
(0..ct_rgsw.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk0_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.2,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
module.free();
}
#[test]
fn from_prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_rgsw_rhs: usize = 60;
let log_k_rgsw_lhs_in: usize = 45;
let log_k_rgsw_lhs_out: usize = 45;
let rows: usize = (log_k_rgsw_lhs_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw_rhs: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_rhs, rows);
let mut ct_rgsw_lhs_in: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_lhs_in, rows);
let mut ct_rgsw_lhs_out: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_lhs_out, rows);
let mut pt_rgsw_lhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_rgsw_rhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw_lhs.fill_ternary_prob(0, 0.5, &mut source_xs);
let k: usize = 1;
pt_rgsw_rhs.to_mut().raw_mut()[k] = 1; //X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_rgsw_rhs.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_rgsw_lhs_out.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw_lhs_in.size())
| RGSWCt::prod_by_rgsw_scratch_space(
&module,
ct_rgsw_lhs_out.size(),
ct_rgsw_lhs_in.size(),
ct_rgsw_rhs.size(),
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw_rhs.encrypt_sk(
&module,
&pt_rgsw_rhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs_in.encrypt_sk(
&module,
&pt_rgsw_lhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs_out.prod_by_rgsw(&module, &ct_rgsw_lhs_in, &ct_rgsw_rhs, scratch.borrow());
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rgsw_lhs_out);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_lhs_out);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_lhs_out.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_lhs_out.size());
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_lhs_out);
module.vec_znx_rotate_inplace(k as i64, &mut pt_rgsw_lhs, 0);
(0..ct_rgsw_lhs_out.cols()).for_each(|col_j| {
(0..ct_rgsw_lhs_out.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw_lhs, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_lhs_out.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rgsw_lhs_in,
log_k_rgsw_rhs,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
module.free();
}
#[test]
fn from_prod_by_rgsw_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_rgsw_rhs: usize = 60;
let log_k_rgsw_lhs: usize = 45;
let rows: usize = (log_k_rgsw_lhs + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw_rhs: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_rhs, rows);
let mut ct_rgsw_lhs: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_rgsw_lhs, rows);
let mut pt_rgsw_lhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_rgsw_rhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw_lhs.fill_ternary_prob(0, 0.5, &mut source_xs);
let k: usize = 1;
pt_rgsw_rhs.to_mut().raw_mut()[k] = 1; //X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_rgsw_rhs.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_rgsw_lhs.size())
| RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw_lhs.size())
| RGSWCt::prod_by_rgsw_inplace_scratch_space(&module, ct_rgsw_lhs.size(), ct_rgsw_rhs.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw_rhs.encrypt_sk(
&module,
&pt_rgsw_rhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs.encrypt_sk(
&module,
&pt_rgsw_lhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs.prod_by_rgsw_inplace(&module, &ct_rgsw_rhs, scratch.borrow());
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rgsw_lhs);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_lhs);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_lhs.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_lhs.size());
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rgsw_lhs);
module.vec_znx_rotate_inplace(k as i64, &mut pt_rgsw_lhs, 0);
(0..ct_rgsw_lhs.cols()).for_each(|col_j| {
(0..ct_rgsw_lhs.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw_lhs, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_lhs.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rgsw_lhs,
log_k_rgsw_rhs,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
module.free();
}
pub(crate) fn noise_rgsw_product(
n: f64,
log_base2k: usize,
var_xs: f64,

File diff suppressed because it is too large Load Diff

View File

@@ -1,448 +1,443 @@
#[cfg(test)]
mod tests {
use crate::{
elem::{FromProdBy, FromProdByScratchSpace, Infos, ProdBy, ProdByScratchSpace},
grlwe::GRLWECt,
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECt, RLWECtDft, RLWEPt},
test_fft64::{grlwe::noise_grlwe_rlwe_product, rgsw::noise_rgsw_rlwe_product},
};
use base2k::{
FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, VecZnxToMut, ZnxViewMut,
};
use sampling::source::Source;
#[test]
fn from_prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_in_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_out_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| RLWECtDft::from_prod_by_grlwe_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_in_dft);
ct_rlwe_out_dft.from_prod_by_grlwe(&module, &ct_rlwe_in_dft, &ct_grlwe, scratch.borrow());
ct_rlwe_out_dft.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn prod_by_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe: usize = 45;
let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| RLWECtDft::prod_by_grlwe_scratch_space(&module, ct_rlwe_dft.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.prod_by_grlwe(&module, &ct_grlwe, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn from_prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_dft_in: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft_out: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| RLWECt::from_prod_by_rgsw_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_rgsw.size(),
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_dft_in);
ct_rlwe_dft_out.from_prod_by_rgsw(&module, &ct_rlwe_dft_in, &ct_rgsw, scratch.borrow());
ct_rlwe_dft_out.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| RLWECt::prod_by_rgsw_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.prod_by_rgsw(&module, &ct_rgsw, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
use crate::{
elem::{Infos, ProdInplace, ProdInplaceScratchSpace, ProdScratchSpace, Product},
grlwe::GRLWECt,
keys::{SecretKey, SecretKeyDft},
rgsw::RGSWCt,
rlwe::{RLWECt, RLWECtDft, RLWEPt},
test_fft64::{grlwe::noise_grlwe_rlwe_product, rgsw::noise_rgsw_product},
};
use base2k::{FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, VecZnxToMut, ZnxViewMut};
use sampling::source::Source;
#[test]
fn by_grlwe_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_in_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_out_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| RLWECtDft::prod_by_grlwe_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_in_dft);
ct_rlwe_out_dft.prod_by_grlwe(&module, &ct_rlwe_in_dft, &ct_grlwe, scratch.borrow());
ct_rlwe_out_dft.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn prod_by_grlwe_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe: usize = 45;
let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| RLWECtDft::prod_by_grlwe_inplace_scratch_space(&module, ct_rlwe_dft.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.prod_by_grlwe_inplace(&module, &ct_grlwe, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn prod_by_rgsw() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_dft_in: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft_out: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| RLWECt::prod_by_rgsw_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_rgsw.size(),
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_dft_in);
ct_rlwe_dft_out.prod_by_rgsw(&module, &ct_rlwe_dft_in, &ct_rgsw, scratch.borrow());
ct_rlwe_dft_out.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn prod_by_rgsw_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| RLWECt::prod_by_rgsw_inplace_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.prod_by_rgsw_inplace(&module, &ct_rgsw, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}