working on adding rank to glwe (all test passing)

This commit is contained in:
Jean-Philippe Bossuat
2025-05-13 17:21:41 +02:00
parent 31b14ee585
commit dee889dc0c
22 changed files with 2020 additions and 2030 deletions

614
core/src/test_fft64/ggsw.rs Normal file
View File

@@ -0,0 +1,614 @@
use base2k::{
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScratchOwned, Stats, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, VecZnxToMut, ZnxViewMut, ZnxZero,
};
use sampling::source::Source;
use crate::{
elem::{GetRow, Infos},
ggsw_ciphertext::GGSWCiphertext,
glwe_ciphertext_fourier::GLWECiphertextFourier,
glwe_plaintext::GLWEPlaintext,
keys::{SecretKey, SecretKeyFourier},
keyswitch_key::GLWESwitchingKey,
test_fft64::gglwe::noise_grlwe_rlwe_product,
};
#[test]
fn encrypt_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let rank: usize = 1;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_ct, rows, rank);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_ct);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct.size())
| GLWECiphertextFourier::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::new(&module, log_base2k, log_k_ct, rank);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct.size());
(0..ct.rank()).for_each(|col_j| {
(0..ct.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_scalar, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let std_pt: f64 = pt_have.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
pt_want.data.zero();
});
});
}
#[test]
fn keyswitch() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rgsw_in: usize = 45;
let log_k_rgsw_out: usize = 45;
let rows: usize = (log_k_rgsw_in + log_base2k - 1) / log_base2k;
let rank: usize = 1;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GLWESwitchingKey<Vec<u8>, FFT64> =
GLWESwitchingKey::new(&module, log_base2k, log_k_grlwe, rows, rank, rank);
let mut ct_rgsw_in: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_in, rows, rank);
let mut ct_rgsw_out: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_out, rows, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size())
| GLWECiphertextFourier::decrypt_scratch_space(&module, ct_rgsw_out.size())
| GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw_in.size())
| GGSWCiphertext::keyswitch_scratch_space(
&module,
ct_rgsw_out.size(),
ct_rgsw_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_in.encrypt_sk(
&module,
&pt_rgsw,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_out.keyswitch(&module, &ct_rgsw_in, &ct_grlwe, scratch.borrow());
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rgsw_out, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_out);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_out.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_out.size());
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_out);
(0..ct_rgsw_out.rank()).for_each(|col_j| {
(0..ct_rgsw_out.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk0_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_out.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.2,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
}
#[test]
fn keyswitch_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rgsw: usize = 45;
let rows: usize = (log_k_rgsw + log_base2k - 1) / log_base2k;
let rank: usize = 1;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GLWESwitchingKey<Vec<u8>, FFT64> =
GLWESwitchingKey::new(&module, log_base2k, log_k_grlwe, rows, rank, rank);
let mut ct_rgsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw, rows, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw.fill_ternary_prob(0, 0.5, &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size())
| GLWECiphertextFourier::decrypt_scratch_space(&module, ct_rgsw.size())
| GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size())
| GGSWCiphertext::keyswitch_inplace_scratch_space(&module, ct_rgsw.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow());
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rgsw, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw.size());
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw);
(0..ct_rgsw.rank()).for_each(|col_j| {
(0..ct_rgsw.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk0_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.2,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
}
#[test]
fn external_product() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_rgsw_rhs: usize = 60;
let log_k_rgsw_lhs_in: usize = 45;
let log_k_rgsw_lhs_out: usize = 45;
let rows: usize = (log_k_rgsw_lhs_in + log_base2k - 1) / log_base2k;
let rank: usize = 1;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw_rhs: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_rhs, rows, rank);
let mut ct_rgsw_lhs_in: GGSWCiphertext<Vec<u8>, FFT64> =
GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_lhs_in, rows, rank);
let mut ct_rgsw_lhs_out: GGSWCiphertext<Vec<u8>, FFT64> =
GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_lhs_out, rows, rank);
let mut pt_rgsw_lhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_rgsw_rhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw_lhs.fill_ternary_prob(0, 0.5, &mut source_xs);
let k: usize = 1;
pt_rgsw_rhs.to_mut().raw_mut()[k] = 1; //X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_rgsw_rhs.size())
| GLWECiphertextFourier::decrypt_scratch_space(&module, ct_rgsw_lhs_out.size())
| GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw_lhs_in.size())
| GGSWCiphertext::external_product_scratch_space(
&module,
ct_rgsw_lhs_out.size(),
ct_rgsw_lhs_in.size(),
ct_rgsw_rhs.size(),
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk_dft.dft(&module, &sk);
ct_rgsw_rhs.encrypt_sk(
&module,
&pt_rgsw_rhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs_in.encrypt_sk(
&module,
&pt_rgsw_lhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs_out.external_product(&module, &ct_rgsw_lhs_in, &ct_rgsw_rhs, scratch.borrow());
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rgsw_lhs_out, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_lhs_out);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_lhs_out.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_lhs_out.size());
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_lhs_out);
module.vec_znx_rotate_inplace(k as i64, &mut pt_rgsw_lhs, 0);
(0..ct_rgsw_lhs_out.rank()).for_each(|col_j| {
(0..ct_rgsw_lhs_out.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw_lhs, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_lhs_out.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rgsw_lhs_in,
log_k_rgsw_rhs,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
}
#[test]
fn external_product_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_rgsw_rhs: usize = 60;
let log_k_rgsw_lhs: usize = 45;
let rows: usize = (log_k_rgsw_lhs + log_base2k - 1) / log_base2k;
let rank: usize = 1;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw_rhs: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_rhs, rows, rank);
let mut ct_rgsw_lhs: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_rgsw_lhs, rows, rank);
let mut pt_rgsw_lhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_rgsw_rhs: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_rgsw_lhs.fill_ternary_prob(0, 0.5, &mut source_xs);
let k: usize = 1;
pt_rgsw_rhs.to_mut().raw_mut()[k] = 1; //X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_rgsw_rhs.size())
| GLWECiphertextFourier::decrypt_scratch_space(&module, ct_rgsw_lhs.size())
| GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw_lhs.size())
| GGSWCiphertext::external_product_inplace_scratch_space(&module, ct_rgsw_lhs.size(), ct_rgsw_rhs.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module, rank);
sk_dft.dft(&module, &sk);
ct_rgsw_rhs.encrypt_sk(
&module,
&pt_rgsw_rhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs.encrypt_sk(
&module,
&pt_rgsw_lhs,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rgsw_lhs.external_product_inplace(&module, &ct_rgsw_rhs, scratch.borrow());
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rgsw_lhs, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_lhs);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct_rgsw_lhs.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct_rgsw_lhs.size());
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rgsw_lhs);
module.vec_znx_rotate_inplace(k as i64, &mut pt_rgsw_lhs, 0);
(0..ct_rgsw_lhs.rank()).for_each(|col_j| {
(0..ct_rgsw_lhs.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_rgsw_lhs, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct_rgsw_lhs.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt, 0, &pt_want, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rgsw_lhs,
log_k_rgsw_rhs,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"have: {} want: {}",
noise_have,
noise_want
);
pt_want.data.zero();
});
});
}
pub(crate) fn noise_rgsw_product(
n: f64,
log_base2k: usize,
var_xs: f64,
var_msg: f64,
var_a0_err: f64,
var_a1_err: f64,
var_gct_err_lhs: f64,
var_gct_err_rhs: f64,
a_logq: usize,
b_logq: usize,
) -> f64 {
let a_logq: usize = a_logq.min(b_logq);
let a_cols: usize = (a_logq + log_base2k - 1) / log_base2k;
let b_scale = 2.0f64.powi(b_logq as i32);
let a_scale: f64 = 2.0f64.powi((b_logq - a_logq) as i32);
let base: f64 = (1 << (log_base2k)) as f64;
let var_base: f64 = base * base / 12f64;
// lhs = a_cols * n * (var_base * var_gct_err_lhs + var_e_a * var_msg * p^2)
// rhs = a_cols * n * var_base * var_gct_err_rhs * var_xs
let mut noise: f64 = 2.0 * (a_cols as f64) * n * var_base * (var_gct_err_lhs + var_xs * var_gct_err_rhs);
noise += var_msg * var_a0_err * a_scale * a_scale * n;
noise += var_msg * var_a1_err * a_scale * a_scale * n * var_xs;
noise = noise.sqrt();
noise /= b_scale;
noise.log2().min(-1.0) // max noise is [-2^{-1}, 2^{-1}]
}