mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 13:16:44 +01:00
vmp & svp doc
This commit is contained in:
@@ -1,11 +1,12 @@
|
||||
# DISCLAIMER: ONLY TESTED ON UBUNTU
|
||||
|
||||
## WSL/Ubuntu
|
||||
To use this crate you need to build spqlios-arithmetic, which is provided a as a git submodule:
|
||||
1) Initialize the sub-modile
|
||||
1) Initialize the sub-module
|
||||
2) $ cd base2k/spqlios-arithmetic
|
||||
3) mdkir build
|
||||
4) cd build
|
||||
5) cmake ..
|
||||
6) make
|
||||
|
||||
## Others
|
||||
Steps 3 to 6 might change depending of your platform. See [spqlios-arithmetic/wiki/build](https://github.com/tfhe/spqlios-arithmetic/wiki/build) for additional information and build options.
|
||||
@@ -6,7 +6,8 @@ fn main() {
|
||||
let n: usize = 16;
|
||||
let log_base2k: usize = 18;
|
||||
let limbs: usize = 3;
|
||||
let log_scale: usize = (limbs - 1) * log_base2k - 5;
|
||||
let msg_limbs: usize = 2;
|
||||
let log_scale: usize = msg_limbs * log_base2k - 5;
|
||||
let module: Module = Module::new::<FFT64>(n);
|
||||
|
||||
let mut carry: Vec<u8> = vec![0; module.vec_znx_big_normalize_tmp_bytes()];
|
||||
@@ -14,7 +15,7 @@ fn main() {
|
||||
let seed: [u8; 32] = [0; 32];
|
||||
let mut source: Source = Source::new(seed);
|
||||
|
||||
let mut res: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
let mut res: VecZnx = module.new_vec_znx(limbs);
|
||||
|
||||
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
|
||||
let mut s: Scalar = Scalar::new(n);
|
||||
@@ -27,8 +28,8 @@ fn main() {
|
||||
module.svp_prepare(&mut s_ppol, &s);
|
||||
|
||||
// a <- Z_{2^prec}[X]/(X^{N}+1)
|
||||
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
a.fill_uniform(&mut source, log_base2k * limbs);
|
||||
let mut a: VecZnx = module.new_vec_znx(limbs);
|
||||
a.fill_uniform(log_base2k, &mut source, limbs);
|
||||
|
||||
// Scratch space for DFT values
|
||||
let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.limbs());
|
||||
@@ -42,23 +43,23 @@ fn main() {
|
||||
// buf_big <- IDFT(buf_dft) (not normalized)
|
||||
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, a.limbs());
|
||||
|
||||
let mut m: VecZnx = VecZnx::new(n, log_base2k, 2);
|
||||
let mut m: VecZnx = module.new_vec_znx(msg_limbs);
|
||||
|
||||
let mut want: Vec<i64> = vec![0; n];
|
||||
want.iter_mut()
|
||||
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
|
||||
|
||||
// m
|
||||
m.from_i64(&want, 4, log_scale);
|
||||
m.normalize(&mut carry);
|
||||
m.from_i64(log_base2k, &want, 4, log_scale);
|
||||
m.normalize(log_base2k, &mut carry);
|
||||
|
||||
// buf_big <- m - buf_big
|
||||
module.vec_znx_big_sub_small_a_inplace(&mut buf_big, &m);
|
||||
|
||||
// b <- normalize(buf_big) + e
|
||||
let mut b: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
module.vec_znx_big_normalize(&mut b, &buf_big, &mut carry);
|
||||
b.add_normal(&mut source, 3.2, 19.0, log_base2k * limbs);
|
||||
let mut b: VecZnx = module.new_vec_znx(limbs);
|
||||
module.vec_znx_big_normalize(log_base2k, &mut b, &buf_big, &mut carry);
|
||||
b.add_normal(log_base2k, &mut source, 3.2, 19.0, log_base2k * limbs);
|
||||
|
||||
//Decrypt
|
||||
|
||||
@@ -70,11 +71,11 @@ fn main() {
|
||||
module.vec_znx_big_add_small_inplace(&mut buf_big, &b);
|
||||
|
||||
// res <- normalize(buf_big)
|
||||
module.vec_znx_big_normalize(&mut res, &buf_big, &mut carry);
|
||||
module.vec_znx_big_normalize(log_base2k, &mut res, &buf_big, &mut carry);
|
||||
|
||||
// have = m * 2^{log_scale} + e
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
res.to_i64(&mut have, res.limbs() * log_base2k);
|
||||
res.to_i64(log_base2k, &mut have, res.limbs() * log_base2k);
|
||||
|
||||
let scale: f64 = (1 << (res.limbs() * log_base2k - log_scale)) as f64;
|
||||
izip!(want.iter(), have.iter())
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
use base2k::{Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, FFT64};
|
||||
use base2k::vmp::VectorMatrixProduct;
|
||||
use base2k::{Free, Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, FFT64};
|
||||
use std::cmp::min;
|
||||
|
||||
fn main() {
|
||||
@@ -22,9 +23,9 @@ fn main() {
|
||||
let mut a_values: Vec<i64> = vec![i64::default(); n];
|
||||
a_values[1] = (1 << log_base2k) + 1;
|
||||
|
||||
let mut a: VecZnx = module.new_vec_znx(log_base2k, limbs);
|
||||
a.from_i64(&a_values, 32, log_k);
|
||||
a.normalize(&mut buf);
|
||||
let mut a: VecZnx = module.new_vec_znx(limbs);
|
||||
a.from_i64(log_base2k, &a_values, 32, log_k);
|
||||
a.normalize(log_base2k, &mut buf);
|
||||
|
||||
(0..a.limbs()).for_each(|i| println!("{}: {:?}", i, a.at(i)));
|
||||
|
||||
@@ -34,41 +35,26 @@ fn main() {
|
||||
b_mat.at_mut(i, i)[1] = 1 as i64;
|
||||
});
|
||||
|
||||
println!();
|
||||
(0..rows).for_each(|i| {
|
||||
(0..cols).for_each(|j| println!("{} {}: {:?}", i, j, b_mat.at(i, j)));
|
||||
println!();
|
||||
});
|
||||
|
||||
let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
|
||||
|
||||
/*
|
||||
(0..cols).for_each(|i| {
|
||||
(0..rows).for_each(|j| println!("{} {}: {:?}", i, j, vmp_pmat.at(i, j)));
|
||||
println!();
|
||||
});
|
||||
*/
|
||||
|
||||
//println!("{:?}", vmp_pmat.as_f64());
|
||||
|
||||
let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
|
||||
module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
|
||||
|
||||
let mut c_big: VecZnxBig = c_dft.as_vec_znx_big();
|
||||
module.vec_znx_idft_tmp_a(&mut c_big, &mut c_dft, cols);
|
||||
|
||||
let mut res: VecZnx = module.new_vec_znx(log_base2k, cols);
|
||||
module.vec_znx_big_normalize(&mut res, &c_big, &mut buf);
|
||||
let mut res: VecZnx = module.new_vec_znx(cols);
|
||||
module.vec_znx_big_normalize(log_base2k, &mut res, &c_big, &mut buf);
|
||||
|
||||
let mut values_res: Vec<i64> = vec![i64::default(); n];
|
||||
res.to_i64(&mut values_res, log_k);
|
||||
res.to_i64(log_base2k, &mut values_res, log_k);
|
||||
|
||||
(0..res.limbs()).for_each(|i| println!("{}: {:?}", i, res.at(i)));
|
||||
|
||||
module.delete();
|
||||
c_dft.delete();
|
||||
vmp_pmat.delete();
|
||||
module.free();
|
||||
c_dft.free();
|
||||
vmp_pmat.free();
|
||||
|
||||
//println!("{:?}", values_res)
|
||||
}
|
||||
|
||||
@@ -31,13 +31,13 @@ pub mod vec_znx_dft;
|
||||
#[allow(unused_imports)]
|
||||
pub use vec_znx_dft::*;
|
||||
|
||||
pub mod scalar_vector_product;
|
||||
pub mod svp;
|
||||
#[allow(unused_imports)]
|
||||
pub use scalar_vector_product::*;
|
||||
pub use svp::*;
|
||||
|
||||
pub mod vector_matrix_product;
|
||||
pub mod vmp;
|
||||
#[allow(unused_imports)]
|
||||
pub use vector_matrix_product::*;
|
||||
pub use vmp::*;
|
||||
|
||||
pub const GALOISGENERATOR: u64 = 5;
|
||||
|
||||
@@ -65,3 +65,10 @@ pub fn cast_u8_to_f64_slice(data: &mut [u8]) -> &[f64] {
|
||||
let len: usize = data.len() / std::mem::size_of::<f64>();
|
||||
unsafe { std::slice::from_raw_parts(ptr, len) }
|
||||
}
|
||||
|
||||
/// This trait should be implemented by structs that point to
|
||||
/// memory allocated through C.
|
||||
pub trait Free {
|
||||
// Frees the memory and self destructs.
|
||||
fn free(self);
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use crate::ffi::module::{delete_module_info, module_info_t, new_module_info, MODULE};
|
||||
use crate::GALOISGENERATOR;
|
||||
use crate::{Free, GALOISGENERATOR};
|
||||
|
||||
pub type MODULETYPE = u8;
|
||||
pub const FFT64: u8 = 0;
|
||||
@@ -53,8 +53,10 @@ impl Module {
|
||||
|
||||
(gal_el as i64) * gen.signum()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn delete(self) {
|
||||
impl Free for Module {
|
||||
fn free(self) {
|
||||
unsafe { delete_module_info(self.0) }
|
||||
drop(self);
|
||||
}
|
||||
|
||||
@@ -1,33 +1,52 @@
|
||||
use crate::ffi::svp::{delete_svp_ppol, new_svp_ppol, svp_apply_dft, svp_ppol_t, svp_prepare};
|
||||
use crate::scalar::Scalar;
|
||||
use crate::{Module, VecZnx, VecZnxDft};
|
||||
use crate::{Free, Module, VecZnx, VecZnxDft};
|
||||
|
||||
pub struct SvpPPol(pub *mut svp_ppol_t, pub usize);
|
||||
|
||||
/// A prepared [crate::Scalar] for [ScalarVectorProduct::svp_apply_dft].
|
||||
/// An [SvpPPol] an be seen as a [VecZnxDft] of one limb.
|
||||
/// The backend array of an [SvpPPol] is allocated in C and must be freed manually.
|
||||
impl SvpPPol {
|
||||
/// Returns the ring degree of the [SvpPPol].
|
||||
pub fn n(&self) -> usize {
|
||||
self.1
|
||||
}
|
||||
|
||||
pub fn delete(self) {
|
||||
/// Returns the number of limbs of the [SvpPPol], which is always 1.
|
||||
pub fn limbs(&self) -> usize {
|
||||
1
|
||||
}
|
||||
}
|
||||
|
||||
impl Free for SvpPPol {
|
||||
fn free(self) {
|
||||
unsafe { delete_svp_ppol(self.0) };
|
||||
let _ = drop(self);
|
||||
}
|
||||
}
|
||||
|
||||
pub trait ScalarVectorProduct {
|
||||
/// Prepares a [crate::Scalar] for a [ScalarVectorProduct::svp_apply_dft].
|
||||
fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar);
|
||||
|
||||
/// Allocates a new [SvpPPol].
|
||||
fn svp_new_ppol(&self) -> SvpPPol;
|
||||
|
||||
/// Applies the [SvpPPol] x [VecZnxDft] product, where each limb of
|
||||
/// the [VecZnxDft] is multiplied with [SvpPPol].
|
||||
fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx);
|
||||
}
|
||||
|
||||
impl Module {
|
||||
// Prepares a scalar polynomial (1 limb) for a scalar x vector product.
|
||||
// Method will panic if a.limbs() != 1.
|
||||
pub fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar) {
|
||||
unsafe { svp_prepare(self.0, svp_ppol.0, a.as_ptr()) }
|
||||
}
|
||||
|
||||
// Allocates a scalar-vector-product prepared-poly (VecZnxBig).
|
||||
pub fn svp_new_ppol(&self) -> SvpPPol {
|
||||
unsafe { SvpPPol(new_svp_ppol(self.0), self.n()) }
|
||||
}
|
||||
|
||||
// Applies a scalar x vector product: res <- a (ppol) x b
|
||||
pub fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx) {
|
||||
let limbs: u64 = b.limbs() as u64;
|
||||
assert!(
|
||||
@@ -9,23 +9,21 @@ use sampling::source::Source;
|
||||
use std::cmp::min;
|
||||
|
||||
impl Module {
|
||||
pub fn new_vec_znx(&self, log_base2k: usize, limbs: usize) -> VecZnx {
|
||||
VecZnx::new(self.n(), log_base2k, limbs)
|
||||
pub fn new_vec_znx(&self, limbs: usize) -> VecZnx {
|
||||
VecZnx::new(self.n(), limbs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct VecZnx {
|
||||
pub n: usize,
|
||||
pub log_base2k: usize,
|
||||
pub data: Vec<i64>,
|
||||
}
|
||||
|
||||
impl VecZnx {
|
||||
pub fn new(n: usize, log_base2k: usize, limbs: usize) -> Self {
|
||||
pub fn new(n: usize, limbs: usize) -> Self {
|
||||
Self {
|
||||
n: n,
|
||||
log_base2k: log_base2k,
|
||||
data: vec![i64::default(); Self::buffer_size(n, limbs)],
|
||||
}
|
||||
}
|
||||
@@ -34,7 +32,7 @@ impl VecZnx {
|
||||
n * limbs
|
||||
}
|
||||
|
||||
pub fn from_buffer(&mut self, n: usize, log_base2k: usize, limbs: usize, buf: &[i64]) {
|
||||
pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &[i64]) {
|
||||
let size = Self::buffer_size(n, limbs);
|
||||
assert!(
|
||||
buf.len() >= size,
|
||||
@@ -45,7 +43,6 @@ impl VecZnx {
|
||||
size
|
||||
);
|
||||
self.n = n;
|
||||
self.log_base2k = log_base2k;
|
||||
self.data = Vec::from(&buf[..size])
|
||||
}
|
||||
|
||||
@@ -94,25 +91,25 @@ impl VecZnx {
|
||||
unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
pub fn from_i64(&mut self, data: &[i64], log_max: usize, log_k: usize) {
|
||||
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
|
||||
pub fn from_i64(&mut self, log_base2k: usize, data: &[i64], log_max: usize, log_k: usize) {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
|
||||
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
|
||||
|
||||
let size: usize = min(data.len(), self.n());
|
||||
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k);
|
||||
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
|
||||
|
||||
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
|
||||
// values on the last limb.
|
||||
// Else we decompose values base2k.
|
||||
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k {
|
||||
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
|
||||
(0..limbs - 1).for_each(|i| unsafe {
|
||||
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
|
||||
});
|
||||
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
|
||||
} else {
|
||||
let mask: i64 = (1 << self.log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
|
||||
let mask: i64 = (1 << log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
|
||||
(0..steps).for_each(|i| unsafe {
|
||||
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
|
||||
@@ -122,16 +119,16 @@ impl VecZnx {
|
||||
.rev()
|
||||
.enumerate()
|
||||
.for_each(|(i, i_rev)| {
|
||||
let shift: usize = i * self.log_base2k;
|
||||
let shift: usize = i * log_base2k;
|
||||
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
|
||||
.for_each(|(y, x)| *y = (x >> shift) & mask);
|
||||
})
|
||||
}
|
||||
|
||||
// Case where self.prec % self.k != 0.
|
||||
if log_k_rem != self.log_base2k {
|
||||
if log_k_rem != log_base2k {
|
||||
let limbs = self.limbs();
|
||||
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
(limbs - steps..limbs).rev().for_each(|i| {
|
||||
self.at_mut(i)[..size]
|
||||
.iter_mut()
|
||||
@@ -140,23 +137,30 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_i64_single(&mut self, i: usize, value: i64, log_max: usize, log_k: usize) {
|
||||
pub fn from_i64_single(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
i: usize,
|
||||
value: i64,
|
||||
log_max: usize,
|
||||
log_k: usize,
|
||||
) {
|
||||
assert!(i < self.n());
|
||||
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
|
||||
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k);
|
||||
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
|
||||
let limbs = self.limbs();
|
||||
|
||||
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
|
||||
// values on the last limb.
|
||||
// Else we decompose values base2k.
|
||||
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k {
|
||||
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
|
||||
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
|
||||
|
||||
self.at_mut(self.limbs() - 1)[i] = value;
|
||||
} else {
|
||||
let mask: i64 = (1 << self.log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
|
||||
let mask: i64 = (1 << log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
|
||||
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
|
||||
|
||||
@@ -164,21 +168,21 @@ impl VecZnx {
|
||||
.rev()
|
||||
.enumerate()
|
||||
.for_each(|(j, j_rev)| {
|
||||
self.at_mut(j_rev)[i] = (value >> (j * self.log_base2k)) & mask;
|
||||
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
|
||||
})
|
||||
}
|
||||
|
||||
// Case where self.prec % self.k != 0.
|
||||
if log_k_rem != self.log_base2k {
|
||||
if log_k_rem != log_base2k {
|
||||
let limbs = self.limbs();
|
||||
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
(limbs - steps..limbs).rev().for_each(|j| {
|
||||
self.at_mut(j)[i] <<= log_k_rem;
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize(&mut self, carry: &mut [u8]) {
|
||||
pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
|
||||
assert!(
|
||||
carry.len() >= self.n * 8,
|
||||
"invalid carry: carry.len()={} < self.n()={}",
|
||||
@@ -193,7 +197,7 @@ impl VecZnx {
|
||||
(0..self.limbs()).rev().for_each(|i| {
|
||||
znx_normalize(
|
||||
self.n as u64,
|
||||
self.log_base2k as u64,
|
||||
log_base2k as u64,
|
||||
self.at_mut_ptr(i),
|
||||
carry_i64.as_mut_ptr(),
|
||||
self.at_mut_ptr(i),
|
||||
@@ -203,8 +207,8 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_i64(&self, data: &mut [i64], log_k: usize) {
|
||||
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
|
||||
pub fn to_i64(&self, log_base2k: usize, data: &mut [i64], log_k: usize) {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
assert!(
|
||||
data.len() >= self.n,
|
||||
"invalid data: data.len()={} < self.n()={}",
|
||||
@@ -212,33 +216,33 @@ impl VecZnx {
|
||||
self.n
|
||||
);
|
||||
data.copy_from_slice(self.at(0));
|
||||
let rem: usize = self.log_base2k - (log_k % self.log_base2k);
|
||||
let rem: usize = log_base2k - (log_k % log_base2k);
|
||||
(1..limbs).for_each(|i| {
|
||||
if i == limbs - 1 && rem != self.log_base2k {
|
||||
let k_rem: usize = self.log_base2k - rem;
|
||||
if i == limbs - 1 && rem != log_base2k {
|
||||
let k_rem: usize = log_base2k - rem;
|
||||
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
|
||||
*y = (*y << k_rem) + (x >> rem);
|
||||
});
|
||||
} else {
|
||||
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
|
||||
*y = (*y << self.log_base2k) + x;
|
||||
*y = (*y << log_base2k) + x;
|
||||
});
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn to_i64_single(&self, i: usize, log_k: usize) -> i64 {
|
||||
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
|
||||
pub fn to_i64_single(&self, log_base2k: usize, i: usize, log_k: usize) -> i64 {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
assert!(i < self.n());
|
||||
let mut res: i64 = self.data[i];
|
||||
let rem: usize = self.log_base2k - (log_k % self.log_base2k);
|
||||
let rem: usize = log_base2k - (log_k % log_base2k);
|
||||
(1..limbs).for_each(|i| {
|
||||
let x = self.data[i * self.n];
|
||||
if i == limbs - 1 && rem != self.log_base2k {
|
||||
let k_rem: usize = self.log_base2k - rem;
|
||||
if i == limbs - 1 && rem != log_base2k {
|
||||
let k_rem: usize = log_base2k - rem;
|
||||
res = (res << k_rem) + (x >> rem);
|
||||
} else {
|
||||
res = (res << self.log_base2k) + x;
|
||||
res = (res << log_base2k) + x;
|
||||
}
|
||||
});
|
||||
res
|
||||
@@ -259,38 +263,27 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fill_uniform(&mut self, source: &mut Source, log_k: usize) {
|
||||
let mut base2k: u64 = 1 << self.log_base2k;
|
||||
let mut mask: u64 = base2k - 1;
|
||||
let mut base2k_half: i64 = (base2k >> 1) as i64;
|
||||
pub fn fill_uniform(&mut self, log_base2k: usize, source: &mut Source, limbs: usize) {
|
||||
let base2k: u64 = 1 << log_base2k;
|
||||
let mask: u64 = base2k - 1;
|
||||
let base2k_half: i64 = (base2k >> 1) as i64;
|
||||
|
||||
let size: usize = self.n() * (self.limbs() - 1);
|
||||
let size: usize = self.n() * (limbs - 1);
|
||||
|
||||
self.data[..size]
|
||||
.iter_mut()
|
||||
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
|
||||
|
||||
let log_base2k_rem: usize = log_k % self.log_base2k;
|
||||
|
||||
if log_base2k_rem != 0 {
|
||||
base2k = 1 << log_base2k_rem;
|
||||
mask = (base2k - 1) << (self.log_base2k - log_base2k_rem);
|
||||
base2k_half = ((mask >> 1) + 1) as i64;
|
||||
}
|
||||
|
||||
self.data[size..]
|
||||
.iter_mut()
|
||||
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
|
||||
}
|
||||
|
||||
pub fn add_dist_f64<T: Distribution<f64>>(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
source: &mut Source,
|
||||
dist: T,
|
||||
bound: f64,
|
||||
log_k: usize,
|
||||
) {
|
||||
let log_base2k_rem: usize = log_k % self.log_base2k;
|
||||
let log_base2k_rem: usize = log_k % log_base2k;
|
||||
|
||||
if log_base2k_rem != 0 {
|
||||
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
|
||||
@@ -311,29 +304,42 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_normal(&mut self, source: &mut Source, sigma: f64, bound: f64, log_k: usize) {
|
||||
self.add_dist_f64(source, Normal::new(0.0, sigma).unwrap(), bound, log_k);
|
||||
pub fn add_normal(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
source: &mut Source,
|
||||
sigma: f64,
|
||||
bound: f64,
|
||||
log_k: usize,
|
||||
) {
|
||||
self.add_dist_f64(
|
||||
log_base2k,
|
||||
source,
|
||||
Normal::new(0.0, sigma).unwrap(),
|
||||
bound,
|
||||
log_k,
|
||||
);
|
||||
}
|
||||
|
||||
pub fn trunc_pow2(&mut self, k: usize) {
|
||||
pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
|
||||
if k == 0 {
|
||||
return;
|
||||
}
|
||||
|
||||
self.data
|
||||
.truncate((self.limbs() - k / self.log_base2k) * self.n());
|
||||
.truncate((self.limbs() - k / log_base2k) * self.n());
|
||||
|
||||
let k_rem: usize = k % self.log_base2k;
|
||||
let k_rem: usize = k % log_base2k;
|
||||
|
||||
if k_rem != 0 {
|
||||
let mask: i64 = ((1 << (self.log_base2k - k_rem - 1)) - 1) << k_rem;
|
||||
let mask: i64 = ((1 << (log_base2k - k_rem - 1)) - 1) << k_rem;
|
||||
self.at_mut(self.limbs() - 1)
|
||||
.iter_mut()
|
||||
.for_each(|x: &mut i64| *x &= mask)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rsh(&mut self, k: usize, carry: &mut [u8]) {
|
||||
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
|
||||
assert!(
|
||||
carry.len() >> 3 >= self.n(),
|
||||
"invalid carry: carry.len()/8={} < self.n()={}",
|
||||
@@ -342,14 +348,14 @@ impl VecZnx {
|
||||
);
|
||||
|
||||
let limbs: usize = self.limbs();
|
||||
let limbs_steps: usize = k / self.log_base2k;
|
||||
let limbs_steps: usize = k / log_base2k;
|
||||
|
||||
self.data.rotate_right(self.n * limbs_steps);
|
||||
unsafe {
|
||||
znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
|
||||
}
|
||||
|
||||
let k_rem = k % self.log_base2k;
|
||||
let k_rem = k % log_base2k;
|
||||
|
||||
if k_rem != 0 {
|
||||
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
|
||||
@@ -359,7 +365,7 @@ impl VecZnx {
|
||||
}
|
||||
|
||||
let mask: i64 = (1 << k_rem) - 1;
|
||||
let log_base2k: usize = self.log_base2k;
|
||||
let log_base2k: usize = log_base2k;
|
||||
|
||||
(limbs_steps..limbs).for_each(|i| {
|
||||
izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
|
||||
@@ -410,14 +416,14 @@ mod tests {
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
have.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
|
||||
a.from_i64(&have, 10, log_k);
|
||||
a.from_i64(log_base2k, &have, 10, log_k);
|
||||
let mut want = vec![i64::default(); n];
|
||||
a.to_i64(&mut want, log_k);
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
|
||||
}
|
||||
|
||||
@@ -427,7 +433,7 @@ mod tests {
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
let mut source = Source::new([1; 32]);
|
||||
have.iter_mut().for_each(|x| {
|
||||
@@ -435,11 +441,11 @@ mod tests {
|
||||
.next_u64n(u64::MAX, u64::MAX)
|
||||
.wrapping_sub(u64::MAX / 2 + 1) as i64;
|
||||
});
|
||||
a.from_i64(&have, 63, log_k);
|
||||
a.from_i64(log_base2k, &have, 63, log_k);
|
||||
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
|
||||
let mut want = vec![i64::default(); n];
|
||||
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
|
||||
a.to_i64(&mut want, log_k);
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
}
|
||||
#[test]
|
||||
@@ -448,7 +454,7 @@ mod tests {
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
let mut source = Source::new([1; 32]);
|
||||
have.iter_mut().for_each(|x| {
|
||||
@@ -456,16 +462,16 @@ mod tests {
|
||||
.next_u64n(u64::MAX, u64::MAX)
|
||||
.wrapping_sub(u64::MAX / 2 + 1) as i64;
|
||||
});
|
||||
a.from_i64(&have, 63, log_k);
|
||||
a.from_i64(log_base2k, &have, 63, log_k);
|
||||
let mut carry: Vec<u8> = vec![u8::default(); n * 8];
|
||||
a.normalize(&mut carry);
|
||||
a.normalize(log_base2k, &mut carry);
|
||||
|
||||
let base_half = 1 << (log_base2k - 1);
|
||||
a.data
|
||||
.iter()
|
||||
.for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
|
||||
let mut want = vec![i64::default(); n];
|
||||
a.to_i64(&mut want, log_k);
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@ use crate::ffi::vec_znx_big::{
|
||||
vec_znx_bigcoeff_t,
|
||||
};
|
||||
use crate::ffi::vec_znx_dft::vec_znx_dft_t;
|
||||
|
||||
use crate::Free;
|
||||
use crate::{Module, VecZnx, VecZnxDft};
|
||||
|
||||
pub struct VecZnxBig(pub *mut vec_znx_bigcoeff_t, pub usize);
|
||||
@@ -16,7 +16,10 @@ impl VecZnxBig {
|
||||
pub fn limbs(&self) -> usize {
|
||||
self.1
|
||||
}
|
||||
pub fn delete(self) {
|
||||
}
|
||||
|
||||
impl Free for VecZnxBig {
|
||||
fn free(self) {
|
||||
unsafe {
|
||||
delete_vec_znx_big(self.0);
|
||||
}
|
||||
@@ -139,7 +142,13 @@ impl Module {
|
||||
}
|
||||
|
||||
// b <- normalize(a)
|
||||
pub fn vec_znx_big_normalize(&self, b: &mut VecZnx, a: &VecZnxBig, tmp_bytes: &mut [u8]) {
|
||||
pub fn vec_znx_big_normalize(
|
||||
&self,
|
||||
log_base2k: usize,
|
||||
b: &mut VecZnx,
|
||||
a: &VecZnxBig,
|
||||
tmp_bytes: &mut [u8],
|
||||
) {
|
||||
let limbs: usize = b.limbs();
|
||||
assert!(
|
||||
b.limbs() >= limbs,
|
||||
@@ -156,7 +165,7 @@ impl Module {
|
||||
unsafe {
|
||||
vec_znx_big_normalize_base2k(
|
||||
self.0,
|
||||
b.log_base2k as u64,
|
||||
log_base2k as u64,
|
||||
b.as_mut_ptr(),
|
||||
limbs as u64,
|
||||
b.n() as u64,
|
||||
|
||||
@@ -3,7 +3,7 @@ use crate::ffi::vec_znx_dft::{
|
||||
delete_vec_znx_dft, new_vec_znx_dft, vec_znx_dft_t, vec_znx_idft, vec_znx_idft_tmp_a,
|
||||
vec_znx_idft_tmp_bytes,
|
||||
};
|
||||
use crate::{Module, VecZnxBig};
|
||||
use crate::{Free, Module, VecZnxBig};
|
||||
|
||||
pub struct VecZnxDft(pub *mut vec_znx_dft_t, pub usize);
|
||||
|
||||
@@ -14,8 +14,10 @@ impl VecZnxDft {
|
||||
pub fn limbs(&self) -> usize {
|
||||
self.1
|
||||
}
|
||||
}
|
||||
|
||||
pub fn delete(self) {
|
||||
impl Free for VecZnxDft {
|
||||
fn free(self) {
|
||||
unsafe { delete_vec_znx_dft(self.0) };
|
||||
drop(self);
|
||||
}
|
||||
|
||||
@@ -1,366 +0,0 @@
|
||||
use crate::ffi::vmp::{
|
||||
delete_vmp_pmat, new_vmp_pmat, vmp_apply_dft, vmp_apply_dft_tmp_bytes, vmp_apply_dft_to_dft,
|
||||
vmp_apply_dft_to_dft_tmp_bytes, vmp_pmat_t, vmp_prepare_contiguous,
|
||||
vmp_prepare_contiguous_tmp_bytes,
|
||||
};
|
||||
use crate::{Module, VecZnx, VecZnxDft};
|
||||
use std::cmp::min;
|
||||
|
||||
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
|
||||
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
|
||||
pub struct VmpPMat {
|
||||
/// The pointer to the C memory.
|
||||
pub data: *mut vmp_pmat_t,
|
||||
/// The number of [VecZnx].
|
||||
pub rows: usize,
|
||||
/// The number of limbs in each [VecZnx].
|
||||
pub cols: usize,
|
||||
/// The ring degree of each [VecZnx].
|
||||
pub n: usize,
|
||||
}
|
||||
|
||||
impl VmpPMat {
|
||||
|
||||
/// Returns the pointer to the [vmp_pmat_t].
|
||||
pub fn data(&self) -> *mut vmp_pmat_t {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// Returns the number of rows of the [VmpPMat].
|
||||
/// The number of rows (i.e. of [VecZnx]) of the [VmpPMat].
|
||||
pub fn rows(&self) -> usize {
|
||||
self.rows
|
||||
}
|
||||
|
||||
/// Returns the number of cols of the [VmpPMat].
|
||||
/// The number of cols refers to the number of limbs
|
||||
/// of the prepared [VecZnx].
|
||||
pub fn cols(&self) -> usize {
|
||||
self.cols
|
||||
}
|
||||
|
||||
/// Returns the ring dimension of the [VmpPMat].
|
||||
pub fn n(&self) -> usize {
|
||||
self.n
|
||||
}
|
||||
|
||||
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
|
||||
/// When using FFT64 as backend, T should be f64.
|
||||
/// When using NTT120 as backend, T should be i64.
|
||||
pub fn at<T: Default + Copy>(&self, row: usize, col: usize) -> Vec<T> {
|
||||
let mut res: Vec<T> = vec![T::default(); self.n];
|
||||
|
||||
if self.n < 8 {
|
||||
res.copy_from_slice(
|
||||
&self.get_backend_array::<T>()[(row + col * self.rows()) * self.n()
|
||||
..(row + col * self.rows()) * (self.n() + 1)],
|
||||
);
|
||||
} else {
|
||||
(0..self.n >> 3).for_each(|blk| {
|
||||
res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.get_array(row, col, blk)[..8]);
|
||||
});
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// When using FFT64 as backend, T should be f64.
|
||||
/// When using NTT120 as backend, T should be i64.
|
||||
fn get_array<T>(&self, row: usize, col: usize, blk: usize) -> &[T] {
|
||||
let nrows: usize = self.rows();
|
||||
let ncols: usize = self.cols();
|
||||
if col == (ncols - 1) && (ncols & 1 == 1) {
|
||||
&self.get_backend_array::<T>()[blk * nrows * ncols * 8 + col * nrows * 8 + row * 8..]
|
||||
} else {
|
||||
&self.get_backend_array::<T>()[blk * nrows * ncols * 8
|
||||
+ (col / 2) * (2 * nrows) * 8
|
||||
+ row * 2 * 8
|
||||
+ (col % 2) * 8..]
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference of T to the entire contiguous array of the [VmpPMat].
|
||||
/// When using FFT64 as backend, T should be f64.
|
||||
/// When using NTT120 as backend, T should be i64.
|
||||
/// The length of the returned array is rows * cols * n.
|
||||
pub fn get_backend_array<T>(&self) -> &[T] {
|
||||
let ptr: *const T = self.data as *const T;
|
||||
let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::<T>();
|
||||
unsafe { &std::slice::from_raw_parts(ptr, len) }
|
||||
}
|
||||
|
||||
/// frees the memory and self destructs.
|
||||
pub fn delete(self) {
|
||||
unsafe { delete_vmp_pmat(self.data) };
|
||||
drop(self);
|
||||
}
|
||||
}
|
||||
|
||||
impl Module {
|
||||
|
||||
/// Allocates a new [VmpPMat] with the given number of rows and columns.
|
||||
pub fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat {
|
||||
unsafe {
|
||||
VmpPMat {
|
||||
data: new_vmp_pmat(self.0, rows as u64, cols as u64),
|
||||
rows,
|
||||
cols,
|
||||
n: self.n(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of bytes needed as scratch space for [Self::vmp_prepare_contiguous].
|
||||
pub fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize {
|
||||
unsafe { vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
|
||||
}
|
||||
|
||||
/// Prepares a [VmpPMat] given a contiguous array of [i64].
|
||||
/// The helper struct [Matrix3D] can be used to contruct the
|
||||
/// appropriate contiguous array.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// let mut b_mat: Matrix3D<i64> = Matrix3D::new(rows, cols, n);
|
||||
///
|
||||
/// (0..min(rows, cols)).for_each(|i| {
|
||||
/// b_mat.at_mut(i, i)[1] = 1 as i64;
|
||||
/// });
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
/// module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
|
||||
/// ```
|
||||
pub fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_prepare_contiguous(
|
||||
self.0,
|
||||
b.data(),
|
||||
a.as_ptr(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]) {
|
||||
let rows: usize = b.rows();
|
||||
let cols: usize = b.cols();
|
||||
|
||||
let mut mat: Matrix3D<i64> = Matrix3D::<i64>::new(rows, cols, self.n());
|
||||
|
||||
(0..min(rows, a.len())).for_each(|i| {
|
||||
mat.set_row(i, &a[i].data);
|
||||
});
|
||||
|
||||
self.vmp_prepare_contiguous(b, &mat.data, buf);
|
||||
|
||||
/*
|
||||
NOT IMPLEMENTED IN SPQLIOS
|
||||
let mut ptrs: Vec<*const i64> = a.iter().map(|v| v.data.as_ptr()).collect();
|
||||
unsafe {
|
||||
vmp_prepare_dblptr(
|
||||
self.0,
|
||||
b.data(),
|
||||
ptrs.as_mut_ptr(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
pub fn vmp_apply_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize {
|
||||
unsafe {
|
||||
vmp_apply_dft_tmp_bytes(
|
||||
self.0,
|
||||
c_limbs as u64,
|
||||
a_limbs as u64,
|
||||
rows as u64,
|
||||
cols as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_apply_dft(
|
||||
self.0,
|
||||
c.0,
|
||||
c.limbs() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.data(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vmp_apply_dft_to_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft_tmp_bytes(
|
||||
self.0,
|
||||
c_limbs as u64,
|
||||
a_limbs as u64,
|
||||
rows as u64,
|
||||
cols as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vmp_apply_dft_to_dft(
|
||||
&self,
|
||||
c: &mut VecZnxDft,
|
||||
a: &VecZnxDft,
|
||||
b: &VmpPMat,
|
||||
buf: &mut [u8],
|
||||
) {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft(
|
||||
self.0,
|
||||
c.0,
|
||||
c.limbs() as u64,
|
||||
a.0,
|
||||
a.limbs() as u64,
|
||||
b.data(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft(
|
||||
self.0,
|
||||
b.0,
|
||||
b.limbs() as u64,
|
||||
b.0,
|
||||
b.limbs() as u64,
|
||||
a.data(),
|
||||
a.rows() as u64,
|
||||
a.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A helper struture that stores a 3D matrix as a contiguous array.
|
||||
/// To be passed to [Module::vmp_prepare_contiguous].
|
||||
///
|
||||
/// rows: index of the i-th base2K power.
|
||||
/// cols: index of the j-th limb of the i-th row.
|
||||
/// n : polynomial degree.
|
||||
///
|
||||
/// A [Matrix3D] can be seen as a vector of [VecZnx].
|
||||
pub struct Matrix3D<T> {
|
||||
pub data: Vec<T>,
|
||||
pub rows: usize,
|
||||
pub cols: usize,
|
||||
pub n: usize,
|
||||
}
|
||||
|
||||
impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
|
||||
/// Allocates a new [Matrix3D] with the respective dimensions.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
/// ```
|
||||
pub fn new(rows: usize, cols: usize, n: usize) -> Self {
|
||||
let size = rows * cols * n;
|
||||
Self {
|
||||
data: vec![T::default(); size],
|
||||
rows,
|
||||
cols,
|
||||
n,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference to the entry (row, col) of the [Matrix3D].
|
||||
/// The returned array is of size n.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let elem: &[i64] = mat.at(5, 5); // size n
|
||||
/// ```
|
||||
pub fn at(&self, row: usize, col: usize) -> &[T] {
|
||||
assert!(row <= self.rows && col <= self.cols);
|
||||
let idx: usize = row * (self.n * self.cols) + col * self.n;
|
||||
&self.data[idx..idx + self.n]
|
||||
}
|
||||
|
||||
/// Returns a mutable reference of the array at the (row, col) entry of the [Matrix3D].
|
||||
/// The returned array is of size n.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let elem: &mut [i64] = mat.at_mut(5, 5); // size n
|
||||
/// ```
|
||||
pub fn at_mut(&mut self, row: usize, col: usize) -> &mut [T] {
|
||||
assert!(row <= self.rows && col <= self.cols);
|
||||
let idx: usize = row * (self.n * self.cols) + col * self.n;
|
||||
&mut self.data[idx..idx + self.n]
|
||||
}
|
||||
|
||||
/// Sets the entry \[row\] of the [Matrix3D].
|
||||
/// Typicall this is used to assign a [VecZnx] to the i-th row
|
||||
/// of the [Matrix3D].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let a: Vec<i64> = VecZnx::new(n, cols);
|
||||
///
|
||||
/// mat.set_row(1, &a.data);
|
||||
/// ```
|
||||
pub fn set_row(&mut self, row: usize, a: &[T]) {
|
||||
assert!(
|
||||
row < self.rows,
|
||||
"invalid argument row: row={} > self.rows={}",
|
||||
row,
|
||||
self.rows
|
||||
);
|
||||
let idx: usize = row * (self.n * self.cols);
|
||||
let size: usize = min(a.len(), self.cols * self.n);
|
||||
self.data[idx..idx + size].copy_from_slice(&a[..size]);
|
||||
}
|
||||
}
|
||||
592
base2k/src/vmp.rs
Normal file
592
base2k/src/vmp.rs
Normal file
@@ -0,0 +1,592 @@
|
||||
use crate::ffi::vmp::{
|
||||
delete_vmp_pmat, new_vmp_pmat, vmp_apply_dft, vmp_apply_dft_tmp_bytes, vmp_apply_dft_to_dft,
|
||||
vmp_apply_dft_to_dft_tmp_bytes, vmp_pmat_t, vmp_prepare_contiguous,
|
||||
vmp_prepare_contiguous_tmp_bytes,
|
||||
};
|
||||
use crate::Free;
|
||||
use crate::{Module, VecZnx, VecZnxDft};
|
||||
use std::cmp::min;
|
||||
|
||||
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
|
||||
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
|
||||
/// Each row of the [VmpPMat] can be seen as a [VecZnxDft].
|
||||
///
|
||||
/// The backend array of [VmpPMat] is allocate in C,
|
||||
/// and thus must be manually freed.
|
||||
///
|
||||
/// [VmpPMat] is used to permform a vector matrix product between a [VecZnx] and a [VmpPMat].
|
||||
/// See the trait [VectorMatrixProduct] for additional information.
|
||||
pub struct VmpPMat {
|
||||
/// The pointer to the C memory.
|
||||
pub data: *mut vmp_pmat_t,
|
||||
/// The number of [VecZnxDft].
|
||||
pub rows: usize,
|
||||
/// The number of limbs in each [VecZnxDft].
|
||||
pub cols: usize,
|
||||
/// The ring degree of each [VecZnxDft].
|
||||
pub n: usize,
|
||||
}
|
||||
|
||||
impl VmpPMat {
|
||||
/// Returns the pointer to the [vmp_pmat_t].
|
||||
pub fn data(&self) -> *mut vmp_pmat_t {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// Returns the number of rows of the [VmpPMat].
|
||||
/// The number of rows (i.e. of [VecZnx]) of the [VmpPMat].
|
||||
pub fn rows(&self) -> usize {
|
||||
self.rows
|
||||
}
|
||||
|
||||
/// Returns the number of cols of the [VmpPMat].
|
||||
/// The number of cols refers to the number of limbs
|
||||
/// of the prepared [VecZnx].
|
||||
pub fn cols(&self) -> usize {
|
||||
self.cols
|
||||
}
|
||||
|
||||
/// Returns the ring dimension of the [VmpPMat].
|
||||
pub fn n(&self) -> usize {
|
||||
self.n
|
||||
}
|
||||
|
||||
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
|
||||
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
|
||||
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
|
||||
pub fn at<T: Default + Copy>(&self, row: usize, col: usize) -> Vec<T> {
|
||||
let mut res: Vec<T> = vec![T::default(); self.n];
|
||||
|
||||
if self.n < 8 {
|
||||
res.copy_from_slice(
|
||||
&self.get_backend_array::<T>()[(row + col * self.rows()) * self.n()
|
||||
..(row + col * self.rows()) * (self.n() + 1)],
|
||||
);
|
||||
} else {
|
||||
(0..self.n >> 3).for_each(|blk| {
|
||||
res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.get_array(row, col, blk)[..8]);
|
||||
});
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
|
||||
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
|
||||
fn get_array<T>(&self, row: usize, col: usize, blk: usize) -> &[T] {
|
||||
let nrows: usize = self.rows();
|
||||
let ncols: usize = self.cols();
|
||||
if col == (ncols - 1) && (ncols & 1 == 1) {
|
||||
&self.get_backend_array::<T>()[blk * nrows * ncols * 8 + col * nrows * 8 + row * 8..]
|
||||
} else {
|
||||
&self.get_backend_array::<T>()[blk * nrows * ncols * 8
|
||||
+ (col / 2) * (2 * nrows) * 8
|
||||
+ row * 2 * 8
|
||||
+ (col % 2) * 8..]
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference of [T] of the entire contiguous array of the [VmpPMat].
|
||||
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
|
||||
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
|
||||
/// The length of the returned array is rows * cols * n.
|
||||
pub fn get_backend_array<T>(&self) -> &[T] {
|
||||
let ptr: *const T = self.data as *const T;
|
||||
let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::<T>();
|
||||
unsafe { &std::slice::from_raw_parts(ptr, len) }
|
||||
}
|
||||
}
|
||||
|
||||
impl Free for VmpPMat {
|
||||
fn free(self) {
|
||||
unsafe { delete_vmp_pmat(self.data) };
|
||||
drop(self);
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait implements methods for vector matrix product,
|
||||
/// that is, multiplying a [VecZnx] with a [VmpPMat].
|
||||
pub trait VectorMatrixProduct {
|
||||
/// Allocates a new [VmpPMat] with the given number of rows and columns.
|
||||
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat;
|
||||
|
||||
/// Returns the number of bytes needed as scratch space for [VectorMatrixProduct::vmp_prepare_contiguous].
|
||||
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize;
|
||||
|
||||
/// Prepares a [VmpPMat] from a contiguous array of [i64].
|
||||
/// The helper struct [Matrix3D] can be used to contruct and populate
|
||||
/// the appropriate contiguous array.
|
||||
///
|
||||
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Module, Matrix3D, VmpPMat, FFT64, Free};
|
||||
/// use base2k::vmp::VectorMatrixProduct;
|
||||
/// use std::cmp::min;
|
||||
///
|
||||
/// let n: usize = 1024;
|
||||
/// let module = Module::new::<FFT64>(n);
|
||||
/// let rows = 5;
|
||||
/// let cols = 6;
|
||||
///
|
||||
/// let mut b_mat: Matrix3D<i64> = Matrix3D::new(rows, cols, n);
|
||||
///
|
||||
/// // Populates the i-th row of b_math with X^1 * 2^(i * log_w) (here log_w is undefined)
|
||||
/// (0..min(rows, cols)).for_each(|i| {
|
||||
/// b_mat.at_mut(i, i)[1] = 1 as i64;
|
||||
/// });
|
||||
///
|
||||
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_contiguous_tmp_bytes(rows, cols)];
|
||||
///
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
/// module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
|
||||
///
|
||||
/// vmp_pmat.free() // don't forget to free the memory once vmp_pmat is not needed anymore.
|
||||
/// ```
|
||||
fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]);
|
||||
|
||||
/// Prepares a [VmpPMat] from a vector of [VecZnx].
|
||||
///
|
||||
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Module, FFT64, Matrix3D, VmpPMat, VecZnx, Free};
|
||||
/// use base2k::vmp::VectorMatrixProduct;
|
||||
/// use std::cmp::min;
|
||||
///
|
||||
/// let n: usize = 1024;
|
||||
/// let module: Module = Module::new::<FFT64>(n);
|
||||
/// let rows: usize = 5;
|
||||
/// let cols: usize = 6;
|
||||
///
|
||||
/// let mut vecznx: Vec<VecZnx>= Vec::new();
|
||||
/// (0..rows).for_each(|_|{
|
||||
/// vecznx.push(module.new_vec_znx(cols));
|
||||
/// });
|
||||
///
|
||||
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_contiguous_tmp_bytes(rows, cols)];
|
||||
///
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
/// module.vmp_prepare_dblptr(&mut vmp_pmat, &vecznx, &mut buf);
|
||||
///
|
||||
/// vmp_pmat.free();
|
||||
/// module.free();
|
||||
/// ```
|
||||
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft].
|
||||
fn vmp_apply_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
|
||||
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
|
||||
/// `j` cols, the output is a [VecZnx] of `j` limbs.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
|
||||
/// use base2k::vmp::VectorMatrixProduct;
|
||||
///
|
||||
/// let n = 1024;
|
||||
///
|
||||
/// let module: Module = Module::new::<FFT64>(n);
|
||||
/// let limbs: usize = 5;
|
||||
///
|
||||
/// let rows: usize = limbs;
|
||||
/// let cols: usize = limbs + 1;
|
||||
/// let c_limbs: usize = cols;
|
||||
/// let a_limbs: usize = limbs;
|
||||
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
|
||||
///
|
||||
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
///
|
||||
/// let a: VecZnx = module.new_vec_znx(limbs);
|
||||
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
|
||||
/// module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
|
||||
///
|
||||
/// c_dft.free();
|
||||
/// vmp_pmat.free();
|
||||
/// module.free();
|
||||
/// ```
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft_to_dft].
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
|
||||
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
|
||||
/// `j` cols, the output is a [VecZnx] of `j` limbs.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
|
||||
/// use base2k::vmp::VectorMatrixProduct;
|
||||
///
|
||||
/// let n = 1024;
|
||||
///
|
||||
/// let module: Module = Module::new::<FFT64>(n);
|
||||
/// let limbs: usize = 5;
|
||||
///
|
||||
/// let rows: usize = limbs;
|
||||
/// let cols: usize = limbs + 1;
|
||||
/// let c_limbs: usize = cols;
|
||||
/// let a_limbs: usize = limbs;
|
||||
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
|
||||
///
|
||||
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
///
|
||||
/// let a_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
|
||||
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
|
||||
/// module.vmp_apply_dft_to_dft(&mut c_dft, &a_dft, &vmp_pmat, &mut buf);
|
||||
///
|
||||
/// a_dft.free();
|
||||
/// c_dft.free();
|
||||
/// vmp_pmat.free();
|
||||
/// module.free();
|
||||
/// ```
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] in place.
|
||||
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
|
||||
/// `j` cols, the output is a [VecZnx] of `j` limbs.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
|
||||
/// use base2k::vmp::VectorMatrixProduct;
|
||||
///
|
||||
/// let n = 1024;
|
||||
///
|
||||
/// let module: Module = Module::new::<FFT64>(n);
|
||||
/// let limbs: usize = 5;
|
||||
///
|
||||
/// let rows: usize = limbs;
|
||||
/// let cols: usize = limbs + 1;
|
||||
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(limbs, limbs, rows, cols);
|
||||
///
|
||||
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
|
||||
/// let a: VecZnx = module.new_vec_znx(limbs);
|
||||
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
|
||||
///
|
||||
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
|
||||
/// module.vmp_apply_dft_to_dft_inplace(&mut c_dft, &vmp_pmat, &mut buf);
|
||||
///
|
||||
/// c_dft.free();
|
||||
/// vmp_pmat.free();
|
||||
/// module.free();
|
||||
/// ```
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]);
|
||||
}
|
||||
|
||||
impl VectorMatrixProduct for Module {
|
||||
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat {
|
||||
unsafe {
|
||||
VmpPMat {
|
||||
data: new_vmp_pmat(self.0, rows as u64, cols as u64),
|
||||
rows,
|
||||
cols,
|
||||
n: self.n(),
|
||||
}
|
||||
}
|
||||
}
|
||||
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize {
|
||||
unsafe { vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_prepare_contiguous(
|
||||
self.0,
|
||||
b.data(),
|
||||
a.as_ptr(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]) {
|
||||
let rows: usize = b.rows();
|
||||
let cols: usize = b.cols();
|
||||
|
||||
let mut mat: Matrix3D<i64> = Matrix3D::<i64>::new(rows, cols, self.n());
|
||||
|
||||
(0..min(rows, a.len())).for_each(|i| {
|
||||
mat.set_row(i, &a[i].data);
|
||||
});
|
||||
|
||||
self.vmp_prepare_contiguous(b, &mat.data, buf);
|
||||
|
||||
/*
|
||||
NOT IMPLEMENTED IN SPQLIOS
|
||||
let mut ptrs: Vec<*const i64> = a.iter().map(|v| v.data.as_ptr()).collect();
|
||||
unsafe {
|
||||
vmp_prepare_dblptr(
|
||||
self.0,
|
||||
b.data(),
|
||||
ptrs.as_mut_ptr(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize {
|
||||
unsafe {
|
||||
vmp_apply_dft_tmp_bytes(
|
||||
self.0,
|
||||
c_limbs as u64,
|
||||
a_limbs as u64,
|
||||
rows as u64,
|
||||
cols as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_apply_dft(
|
||||
self.0,
|
||||
c.0,
|
||||
c.limbs() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.data(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(
|
||||
&self,
|
||||
c_limbs: usize,
|
||||
a_limbs: usize,
|
||||
rows: usize,
|
||||
cols: usize,
|
||||
) -> usize {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft_tmp_bytes(
|
||||
self.0,
|
||||
c_limbs as u64,
|
||||
a_limbs as u64,
|
||||
rows as u64,
|
||||
cols as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft(
|
||||
self.0,
|
||||
c.0,
|
||||
c.limbs() as u64,
|
||||
a.0,
|
||||
a.limbs() as u64,
|
||||
b.data(),
|
||||
b.rows() as u64,
|
||||
b.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]) {
|
||||
unsafe {
|
||||
vmp_apply_dft_to_dft(
|
||||
self.0,
|
||||
b.0,
|
||||
b.limbs() as u64,
|
||||
b.0,
|
||||
b.limbs() as u64,
|
||||
a.data(),
|
||||
a.rows() as u64,
|
||||
a.cols() as u64,
|
||||
buf.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A helper struture that stores a 3D matrix as a contiguous array.
|
||||
/// To be passed to [VectorMatrixProduct::vmp_prepare_contiguous].
|
||||
///
|
||||
/// rows: index of the i-th base2K power.
|
||||
/// cols: index of the j-th limb of the i-th row.
|
||||
/// n : polynomial degree.
|
||||
///
|
||||
/// A [Matrix3D] can be seen as a vector of [VecZnx].
|
||||
pub struct Matrix3D<T> {
|
||||
pub data: Vec<T>,
|
||||
pub rows: usize,
|
||||
pub cols: usize,
|
||||
pub n: usize,
|
||||
}
|
||||
|
||||
impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
|
||||
/// Allocates a new [Matrix3D] with the respective dimensions.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::Matrix3D;
|
||||
///
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
/// ```
|
||||
pub fn new(rows: usize, cols: usize, n: usize) -> Self {
|
||||
let size = rows * cols * n;
|
||||
Self {
|
||||
data: vec![T::default(); size],
|
||||
rows,
|
||||
cols,
|
||||
n,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference to the entry (row, col) of the [Matrix3D].
|
||||
/// The returned array is of size n.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::Matrix3D;
|
||||
///
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let elem: &[i64] = mat.at(4, 4); // size n
|
||||
/// ```
|
||||
pub fn at(&self, row: usize, col: usize) -> &[T] {
|
||||
assert!(row < self.rows && col < self.cols);
|
||||
let idx: usize = row * (self.n * self.cols) + col * self.n;
|
||||
&self.data[idx..idx + self.n]
|
||||
}
|
||||
|
||||
/// Returns a mutable reference of the array at the (row, col) entry of the [Matrix3D].
|
||||
/// The returned array is of size n.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::Matrix3D;
|
||||
///
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let elem: &mut [i64] = mat.at_mut(4, 4); // size n
|
||||
/// ```
|
||||
pub fn at_mut(&mut self, row: usize, col: usize) -> &mut [T] {
|
||||
assert!(row < self.rows && col < self.cols);
|
||||
let idx: usize = row * (self.n * self.cols) + col * self.n;
|
||||
&mut self.data[idx..idx + self.n]
|
||||
}
|
||||
|
||||
/// Sets the entry \[row\] of the [Matrix3D].
|
||||
/// Typicall this is used to assign a [VecZnx] to the i-th row
|
||||
/// of the [Matrix3D].
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{Matrix3D, VecZnx};
|
||||
///
|
||||
/// let rows = 5; // #decomp
|
||||
/// let cols = 5; // #limbs
|
||||
/// let n = 1024; // #coeffs
|
||||
///
|
||||
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
|
||||
///
|
||||
/// let a: VecZnx = VecZnx::new(n, cols);
|
||||
///
|
||||
/// mat.set_row(1, &a.data);
|
||||
/// ```
|
||||
pub fn set_row(&mut self, row: usize, a: &[T]) {
|
||||
assert!(
|
||||
row < self.rows,
|
||||
"invalid argument row: row={} > self.rows={}",
|
||||
row,
|
||||
self.rows
|
||||
);
|
||||
let idx: usize = row * (self.n * self.cols);
|
||||
let size: usize = min(a.len(), self.cols * self.n);
|
||||
self.data[idx..idx + size].copy_from_slice(&a[..size]);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user