vmp & svp doc

This commit is contained in:
Jean-Philippe Bossuat
2025-02-04 10:51:11 +01:00
parent 12004c426a
commit e4a976ec9e
11 changed files with 759 additions and 500 deletions

View File

@@ -1,11 +1,12 @@
# DISCLAIMER: ONLY TESTED ON UBUNTU
## WSL/Ubuntu
To use this crate you need to build spqlios-arithmetic, which is provided a as a git submodule: To use this crate you need to build spqlios-arithmetic, which is provided a as a git submodule:
1) Initialize the sub-modile 1) Initialize the sub-module
2) $ cd base2k/spqlios-arithmetic 2) $ cd base2k/spqlios-arithmetic
3) mdkir build 3) mdkir build
4) cd build 4) cd build
5) cmake .. 5) cmake ..
6) make 6) make
## Others
Steps 3 to 6 might change depending of your platform. See [spqlios-arithmetic/wiki/build](https://github.com/tfhe/spqlios-arithmetic/wiki/build) for additional information and build options. Steps 3 to 6 might change depending of your platform. See [spqlios-arithmetic/wiki/build](https://github.com/tfhe/spqlios-arithmetic/wiki/build) for additional information and build options.

View File

@@ -6,7 +6,8 @@ fn main() {
let n: usize = 16; let n: usize = 16;
let log_base2k: usize = 18; let log_base2k: usize = 18;
let limbs: usize = 3; let limbs: usize = 3;
let log_scale: usize = (limbs - 1) * log_base2k - 5; let msg_limbs: usize = 2;
let log_scale: usize = msg_limbs * log_base2k - 5;
let module: Module = Module::new::<FFT64>(n); let module: Module = Module::new::<FFT64>(n);
let mut carry: Vec<u8> = vec![0; module.vec_znx_big_normalize_tmp_bytes()]; let mut carry: Vec<u8> = vec![0; module.vec_znx_big_normalize_tmp_bytes()];
@@ -14,7 +15,7 @@ fn main() {
let seed: [u8; 32] = [0; 32]; let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed); let mut source: Source = Source::new(seed);
let mut res: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut res: VecZnx = module.new_vec_znx(limbs);
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1) // s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
let mut s: Scalar = Scalar::new(n); let mut s: Scalar = Scalar::new(n);
@@ -27,8 +28,8 @@ fn main() {
module.svp_prepare(&mut s_ppol, &s); module.svp_prepare(&mut s_ppol, &s);
// a <- Z_{2^prec}[X]/(X^{N}+1) // a <- Z_{2^prec}[X]/(X^{N}+1)
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut a: VecZnx = module.new_vec_znx(limbs);
a.fill_uniform(&mut source, log_base2k * limbs); a.fill_uniform(log_base2k, &mut source, limbs);
// Scratch space for DFT values // Scratch space for DFT values
let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.limbs()); let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.limbs());
@@ -42,23 +43,23 @@ fn main() {
// buf_big <- IDFT(buf_dft) (not normalized) // buf_big <- IDFT(buf_dft) (not normalized)
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, a.limbs()); module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, a.limbs());
let mut m: VecZnx = VecZnx::new(n, log_base2k, 2); let mut m: VecZnx = module.new_vec_znx(msg_limbs);
let mut want: Vec<i64> = vec![0; n]; let mut want: Vec<i64> = vec![0; n];
want.iter_mut() want.iter_mut()
.for_each(|x| *x = source.next_u64n(16, 15) as i64); .for_each(|x| *x = source.next_u64n(16, 15) as i64);
// m // m
m.from_i64(&want, 4, log_scale); m.from_i64(log_base2k, &want, 4, log_scale);
m.normalize(&mut carry); m.normalize(log_base2k, &mut carry);
// buf_big <- m - buf_big // buf_big <- m - buf_big
module.vec_znx_big_sub_small_a_inplace(&mut buf_big, &m); module.vec_znx_big_sub_small_a_inplace(&mut buf_big, &m);
// b <- normalize(buf_big) + e // b <- normalize(buf_big) + e
let mut b: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut b: VecZnx = module.new_vec_znx(limbs);
module.vec_znx_big_normalize(&mut b, &buf_big, &mut carry); module.vec_znx_big_normalize(log_base2k, &mut b, &buf_big, &mut carry);
b.add_normal(&mut source, 3.2, 19.0, log_base2k * limbs); b.add_normal(log_base2k, &mut source, 3.2, 19.0, log_base2k * limbs);
//Decrypt //Decrypt
@@ -70,11 +71,11 @@ fn main() {
module.vec_znx_big_add_small_inplace(&mut buf_big, &b); module.vec_znx_big_add_small_inplace(&mut buf_big, &b);
// res <- normalize(buf_big) // res <- normalize(buf_big)
module.vec_znx_big_normalize(&mut res, &buf_big, &mut carry); module.vec_znx_big_normalize(log_base2k, &mut res, &buf_big, &mut carry);
// have = m * 2^{log_scale} + e // have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n]; let mut have: Vec<i64> = vec![i64::default(); n];
res.to_i64(&mut have, res.limbs() * log_base2k); res.to_i64(log_base2k, &mut have, res.limbs() * log_base2k);
let scale: f64 = (1 << (res.limbs() * log_base2k - log_scale)) as f64; let scale: f64 = (1 << (res.limbs() * log_base2k - log_scale)) as f64;
izip!(want.iter(), have.iter()) izip!(want.iter(), have.iter())

View File

@@ -1,4 +1,5 @@
use base2k::{Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, FFT64}; use base2k::vmp::VectorMatrixProduct;
use base2k::{Free, Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, FFT64};
use std::cmp::min; use std::cmp::min;
fn main() { fn main() {
@@ -22,9 +23,9 @@ fn main() {
let mut a_values: Vec<i64> = vec![i64::default(); n]; let mut a_values: Vec<i64> = vec![i64::default(); n];
a_values[1] = (1 << log_base2k) + 1; a_values[1] = (1 << log_base2k) + 1;
let mut a: VecZnx = module.new_vec_znx(log_base2k, limbs); let mut a: VecZnx = module.new_vec_znx(limbs);
a.from_i64(&a_values, 32, log_k); a.from_i64(log_base2k, &a_values, 32, log_k);
a.normalize(&mut buf); a.normalize(log_base2k, &mut buf);
(0..a.limbs()).for_each(|i| println!("{}: {:?}", i, a.at(i))); (0..a.limbs()).for_each(|i| println!("{}: {:?}", i, a.at(i)));
@@ -34,41 +35,26 @@ fn main() {
b_mat.at_mut(i, i)[1] = 1 as i64; b_mat.at_mut(i, i)[1] = 1 as i64;
}); });
println!();
(0..rows).for_each(|i| {
(0..cols).for_each(|j| println!("{} {}: {:?}", i, j, b_mat.at(i, j)));
println!();
});
let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols); let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf); module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
/*
(0..cols).for_each(|i| {
(0..rows).for_each(|j| println!("{} {}: {:?}", i, j, vmp_pmat.at(i, j)));
println!();
});
*/
//println!("{:?}", vmp_pmat.as_f64());
let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols); let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf); module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
let mut c_big: VecZnxBig = c_dft.as_vec_znx_big(); let mut c_big: VecZnxBig = c_dft.as_vec_znx_big();
module.vec_znx_idft_tmp_a(&mut c_big, &mut c_dft, cols); module.vec_znx_idft_tmp_a(&mut c_big, &mut c_dft, cols);
let mut res: VecZnx = module.new_vec_znx(log_base2k, cols); let mut res: VecZnx = module.new_vec_znx(cols);
module.vec_znx_big_normalize(&mut res, &c_big, &mut buf); module.vec_znx_big_normalize(log_base2k, &mut res, &c_big, &mut buf);
let mut values_res: Vec<i64> = vec![i64::default(); n]; let mut values_res: Vec<i64> = vec![i64::default(); n];
res.to_i64(&mut values_res, log_k); res.to_i64(log_base2k, &mut values_res, log_k);
(0..res.limbs()).for_each(|i| println!("{}: {:?}", i, res.at(i))); (0..res.limbs()).for_each(|i| println!("{}: {:?}", i, res.at(i)));
module.delete(); module.free();
c_dft.delete(); c_dft.free();
vmp_pmat.delete(); vmp_pmat.free();
//println!("{:?}", values_res) //println!("{:?}", values_res)
} }

View File

@@ -31,13 +31,13 @@ pub mod vec_znx_dft;
#[allow(unused_imports)] #[allow(unused_imports)]
pub use vec_znx_dft::*; pub use vec_znx_dft::*;
pub mod scalar_vector_product; pub mod svp;
#[allow(unused_imports)] #[allow(unused_imports)]
pub use scalar_vector_product::*; pub use svp::*;
pub mod vector_matrix_product; pub mod vmp;
#[allow(unused_imports)] #[allow(unused_imports)]
pub use vector_matrix_product::*; pub use vmp::*;
pub const GALOISGENERATOR: u64 = 5; pub const GALOISGENERATOR: u64 = 5;
@@ -65,3 +65,10 @@ pub fn cast_u8_to_f64_slice(data: &mut [u8]) -> &[f64] {
let len: usize = data.len() / std::mem::size_of::<f64>(); let len: usize = data.len() / std::mem::size_of::<f64>();
unsafe { std::slice::from_raw_parts(ptr, len) } unsafe { std::slice::from_raw_parts(ptr, len) }
} }
/// This trait should be implemented by structs that point to
/// memory allocated through C.
pub trait Free {
// Frees the memory and self destructs.
fn free(self);
}

View File

@@ -1,5 +1,5 @@
use crate::ffi::module::{delete_module_info, module_info_t, new_module_info, MODULE}; use crate::ffi::module::{delete_module_info, module_info_t, new_module_info, MODULE};
use crate::GALOISGENERATOR; use crate::{Free, GALOISGENERATOR};
pub type MODULETYPE = u8; pub type MODULETYPE = u8;
pub const FFT64: u8 = 0; pub const FFT64: u8 = 0;
@@ -53,8 +53,10 @@ impl Module {
(gal_el as i64) * gen.signum() (gal_el as i64) * gen.signum()
} }
}
pub fn delete(self) { impl Free for Module {
fn free(self) {
unsafe { delete_module_info(self.0) } unsafe { delete_module_info(self.0) }
drop(self); drop(self);
} }

View File

@@ -1,33 +1,52 @@
use crate::ffi::svp::{delete_svp_ppol, new_svp_ppol, svp_apply_dft, svp_ppol_t, svp_prepare}; use crate::ffi::svp::{delete_svp_ppol, new_svp_ppol, svp_apply_dft, svp_ppol_t, svp_prepare};
use crate::scalar::Scalar; use crate::scalar::Scalar;
use crate::{Module, VecZnx, VecZnxDft}; use crate::{Free, Module, VecZnx, VecZnxDft};
pub struct SvpPPol(pub *mut svp_ppol_t, pub usize); pub struct SvpPPol(pub *mut svp_ppol_t, pub usize);
/// A prepared [crate::Scalar] for [ScalarVectorProduct::svp_apply_dft].
/// An [SvpPPol] an be seen as a [VecZnxDft] of one limb.
/// The backend array of an [SvpPPol] is allocated in C and must be freed manually.
impl SvpPPol { impl SvpPPol {
/// Returns the ring degree of the [SvpPPol].
pub fn n(&self) -> usize { pub fn n(&self) -> usize {
self.1 self.1
} }
pub fn delete(self) { /// Returns the number of limbs of the [SvpPPol], which is always 1.
pub fn limbs(&self) -> usize {
1
}
}
impl Free for SvpPPol {
fn free(self) {
unsafe { delete_svp_ppol(self.0) }; unsafe { delete_svp_ppol(self.0) };
let _ = drop(self); let _ = drop(self);
} }
} }
pub trait ScalarVectorProduct {
/// Prepares a [crate::Scalar] for a [ScalarVectorProduct::svp_apply_dft].
fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar);
/// Allocates a new [SvpPPol].
fn svp_new_ppol(&self) -> SvpPPol;
/// Applies the [SvpPPol] x [VecZnxDft] product, where each limb of
/// the [VecZnxDft] is multiplied with [SvpPPol].
fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx);
}
impl Module { impl Module {
// Prepares a scalar polynomial (1 limb) for a scalar x vector product.
// Method will panic if a.limbs() != 1.
pub fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar) { pub fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar) {
unsafe { svp_prepare(self.0, svp_ppol.0, a.as_ptr()) } unsafe { svp_prepare(self.0, svp_ppol.0, a.as_ptr()) }
} }
// Allocates a scalar-vector-product prepared-poly (VecZnxBig).
pub fn svp_new_ppol(&self) -> SvpPPol { pub fn svp_new_ppol(&self) -> SvpPPol {
unsafe { SvpPPol(new_svp_ppol(self.0), self.n()) } unsafe { SvpPPol(new_svp_ppol(self.0), self.n()) }
} }
// Applies a scalar x vector product: res <- a (ppol) x b
pub fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx) { pub fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx) {
let limbs: u64 = b.limbs() as u64; let limbs: u64 = b.limbs() as u64;
assert!( assert!(

View File

@@ -9,23 +9,21 @@ use sampling::source::Source;
use std::cmp::min; use std::cmp::min;
impl Module { impl Module {
pub fn new_vec_znx(&self, log_base2k: usize, limbs: usize) -> VecZnx { pub fn new_vec_znx(&self, limbs: usize) -> VecZnx {
VecZnx::new(self.n(), log_base2k, limbs) VecZnx::new(self.n(), limbs)
} }
} }
#[derive(Clone)] #[derive(Clone)]
pub struct VecZnx { pub struct VecZnx {
pub n: usize, pub n: usize,
pub log_base2k: usize,
pub data: Vec<i64>, pub data: Vec<i64>,
} }
impl VecZnx { impl VecZnx {
pub fn new(n: usize, log_base2k: usize, limbs: usize) -> Self { pub fn new(n: usize, limbs: usize) -> Self {
Self { Self {
n: n, n: n,
log_base2k: log_base2k,
data: vec![i64::default(); Self::buffer_size(n, limbs)], data: vec![i64::default(); Self::buffer_size(n, limbs)],
} }
} }
@@ -34,7 +32,7 @@ impl VecZnx {
n * limbs n * limbs
} }
pub fn from_buffer(&mut self, n: usize, log_base2k: usize, limbs: usize, buf: &[i64]) { pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &[i64]) {
let size = Self::buffer_size(n, limbs); let size = Self::buffer_size(n, limbs);
assert!( assert!(
buf.len() >= size, buf.len() >= size,
@@ -45,7 +43,6 @@ impl VecZnx {
size size
); );
self.n = n; self.n = n;
self.log_base2k = log_base2k;
self.data = Vec::from(&buf[..size]) self.data = Vec::from(&buf[..size])
} }
@@ -94,25 +91,25 @@ impl VecZnx {
unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) } unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
} }
pub fn from_i64(&mut self, data: &[i64], log_max: usize, log_k: usize) { pub fn from_i64(&mut self, log_base2k: usize, data: &[i64], log_max: usize, log_k: usize) {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k; let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs()); assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let size: usize = min(data.len(), self.n()); let size: usize = min(data.len(), self.n());
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k); let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy // If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb. // values on the last limb.
// Else we decompose values base2k. // Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k { if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|i| unsafe { (0..limbs - 1).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr()); znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
}); });
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]); self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
} else { } else {
let mask: i64 = (1 << self.log_base2k) - 1; let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe { (0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr()); znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
@@ -122,16 +119,16 @@ impl VecZnx {
.rev() .rev()
.enumerate() .enumerate()
.for_each(|(i, i_rev)| { .for_each(|(i, i_rev)| {
let shift: usize = i * self.log_base2k; let shift: usize = i * log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter()) izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask); .for_each(|(y, x)| *y = (x >> shift) & mask);
}) })
} }
// Case where self.prec % self.k != 0. // Case where self.prec % self.k != 0.
if log_k_rem != self.log_base2k { if log_k_rem != log_base2k {
let limbs = self.limbs(); let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|i| { (limbs - steps..limbs).rev().for_each(|i| {
self.at_mut(i)[..size] self.at_mut(i)[..size]
.iter_mut() .iter_mut()
@@ -140,23 +137,30 @@ impl VecZnx {
} }
} }
pub fn from_i64_single(&mut self, i: usize, value: i64, log_max: usize, log_k: usize) { pub fn from_i64_single(
&mut self,
log_base2k: usize,
i: usize,
value: i64,
log_max: usize,
log_k: usize,
) {
assert!(i < self.n()); assert!(i < self.n());
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k; let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs()); assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k); let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let limbs = self.limbs(); let limbs = self.limbs();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy // If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb. // values on the last limb.
// Else we decompose values base2k. // Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k { if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0); (0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value; self.at_mut(self.limbs() - 1)[i] = value;
} else { } else {
let mask: i64 = (1 << self.log_base2k) - 1; let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0); (0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
@@ -164,21 +168,21 @@ impl VecZnx {
.rev() .rev()
.enumerate() .enumerate()
.for_each(|(j, j_rev)| { .for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * self.log_base2k)) & mask; self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
}) })
} }
// Case where self.prec % self.k != 0. // Case where self.prec % self.k != 0.
if log_k_rem != self.log_base2k { if log_k_rem != log_base2k {
let limbs = self.limbs(); let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|j| { (limbs - steps..limbs).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem; self.at_mut(j)[i] <<= log_k_rem;
}) })
} }
} }
pub fn normalize(&mut self, carry: &mut [u8]) { pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
assert!( assert!(
carry.len() >= self.n * 8, carry.len() >= self.n * 8,
"invalid carry: carry.len()={} < self.n()={}", "invalid carry: carry.len()={} < self.n()={}",
@@ -193,7 +197,7 @@ impl VecZnx {
(0..self.limbs()).rev().for_each(|i| { (0..self.limbs()).rev().for_each(|i| {
znx_normalize( znx_normalize(
self.n as u64, self.n as u64,
self.log_base2k as u64, log_base2k as u64,
self.at_mut_ptr(i), self.at_mut_ptr(i),
carry_i64.as_mut_ptr(), carry_i64.as_mut_ptr(),
self.at_mut_ptr(i), self.at_mut_ptr(i),
@@ -203,8 +207,8 @@ impl VecZnx {
} }
} }
pub fn to_i64(&self, data: &mut [i64], log_k: usize) { pub fn to_i64(&self, log_base2k: usize, data: &mut [i64], log_k: usize) {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k; let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!( assert!(
data.len() >= self.n, data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}", "invalid data: data.len()={} < self.n()={}",
@@ -212,33 +216,33 @@ impl VecZnx {
self.n self.n
); );
data.copy_from_slice(self.at(0)); data.copy_from_slice(self.at(0));
let rem: usize = self.log_base2k - (log_k % self.log_base2k); let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| { (1..limbs).for_each(|i| {
if i == limbs - 1 && rem != self.log_base2k { if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = self.log_base2k - rem; let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| { izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem); *y = (*y << k_rem) + (x >> rem);
}); });
} else { } else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| { izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << self.log_base2k) + x; *y = (*y << log_base2k) + x;
}); });
} }
}) })
} }
pub fn to_i64_single(&self, i: usize, log_k: usize) -> i64 { pub fn to_i64_single(&self, log_base2k: usize, i: usize, log_k: usize) -> i64 {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k; let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n()); assert!(i < self.n());
let mut res: i64 = self.data[i]; let mut res: i64 = self.data[i];
let rem: usize = self.log_base2k - (log_k % self.log_base2k); let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| { (1..limbs).for_each(|i| {
let x = self.data[i * self.n]; let x = self.data[i * self.n];
if i == limbs - 1 && rem != self.log_base2k { if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = self.log_base2k - rem; let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem); res = (res << k_rem) + (x >> rem);
} else { } else {
res = (res << self.log_base2k) + x; res = (res << log_base2k) + x;
} }
}); });
res res
@@ -259,38 +263,27 @@ impl VecZnx {
} }
} }
pub fn fill_uniform(&mut self, source: &mut Source, log_k: usize) { pub fn fill_uniform(&mut self, log_base2k: usize, source: &mut Source, limbs: usize) {
let mut base2k: u64 = 1 << self.log_base2k; let base2k: u64 = 1 << log_base2k;
let mut mask: u64 = base2k - 1; let mask: u64 = base2k - 1;
let mut base2k_half: i64 = (base2k >> 1) as i64; let base2k_half: i64 = (base2k >> 1) as i64;
let size: usize = self.n() * (self.limbs() - 1); let size: usize = self.n() * (limbs - 1);
self.data[..size] self.data[..size]
.iter_mut() .iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half); .for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
let log_base2k_rem: usize = log_k % self.log_base2k;
if log_base2k_rem != 0 {
base2k = 1 << log_base2k_rem;
mask = (base2k - 1) << (self.log_base2k - log_base2k_rem);
base2k_half = ((mask >> 1) + 1) as i64;
}
self.data[size..]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
} }
pub fn add_dist_f64<T: Distribution<f64>>( pub fn add_dist_f64<T: Distribution<f64>>(
&mut self, &mut self,
log_base2k: usize,
source: &mut Source, source: &mut Source,
dist: T, dist: T,
bound: f64, bound: f64,
log_k: usize, log_k: usize,
) { ) {
let log_base2k_rem: usize = log_k % self.log_base2k; let log_base2k_rem: usize = log_k % log_base2k;
if log_base2k_rem != 0 { if log_base2k_rem != 0 {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| { self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
@@ -311,29 +304,42 @@ impl VecZnx {
} }
} }
pub fn add_normal(&mut self, source: &mut Source, sigma: f64, bound: f64, log_k: usize) { pub fn add_normal(
self.add_dist_f64(source, Normal::new(0.0, sigma).unwrap(), bound, log_k); &mut self,
log_base2k: usize,
source: &mut Source,
sigma: f64,
bound: f64,
log_k: usize,
) {
self.add_dist_f64(
log_base2k,
source,
Normal::new(0.0, sigma).unwrap(),
bound,
log_k,
);
} }
pub fn trunc_pow2(&mut self, k: usize) { pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
if k == 0 { if k == 0 {
return; return;
} }
self.data self.data
.truncate((self.limbs() - k / self.log_base2k) * self.n()); .truncate((self.limbs() - k / log_base2k) * self.n());
let k_rem: usize = k % self.log_base2k; let k_rem: usize = k % log_base2k;
if k_rem != 0 { if k_rem != 0 {
let mask: i64 = ((1 << (self.log_base2k - k_rem - 1)) - 1) << k_rem; let mask: i64 = ((1 << (log_base2k - k_rem - 1)) - 1) << k_rem;
self.at_mut(self.limbs() - 1) self.at_mut(self.limbs() - 1)
.iter_mut() .iter_mut()
.for_each(|x: &mut i64| *x &= mask) .for_each(|x: &mut i64| *x &= mask)
} }
} }
pub fn rsh(&mut self, k: usize, carry: &mut [u8]) { pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
assert!( assert!(
carry.len() >> 3 >= self.n(), carry.len() >> 3 >= self.n(),
"invalid carry: carry.len()/8={} < self.n()={}", "invalid carry: carry.len()/8={} < self.n()={}",
@@ -342,14 +348,14 @@ impl VecZnx {
); );
let limbs: usize = self.limbs(); let limbs: usize = self.limbs();
let limbs_steps: usize = k / self.log_base2k; let limbs_steps: usize = k / log_base2k;
self.data.rotate_right(self.n * limbs_steps); self.data.rotate_right(self.n * limbs_steps);
unsafe { unsafe {
znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr()); znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
} }
let k_rem = k % self.log_base2k; let k_rem = k % log_base2k;
if k_rem != 0 { if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry); let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
@@ -359,7 +365,7 @@ impl VecZnx {
} }
let mask: i64 = (1 << k_rem) - 1; let mask: i64 = (1 << k_rem) - 1;
let log_base2k: usize = self.log_base2k; let log_base2k: usize = log_base2k;
(limbs_steps..limbs).for_each(|i| { (limbs_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| { izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
@@ -410,14 +416,14 @@ mod tests {
let log_base2k: usize = 17; let log_base2k: usize = 17;
let limbs: usize = 5; let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5; let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n]; let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut() have.iter_mut()
.enumerate() .enumerate()
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2); .for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
a.from_i64(&have, 10, log_k); a.from_i64(log_base2k, &have, 10, log_k);
let mut want = vec![i64::default(); n]; let mut want = vec![i64::default(); n];
a.to_i64(&mut want, log_k); a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b)); izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
} }
@@ -427,7 +433,7 @@ mod tests {
let log_base2k: usize = 17; let log_base2k: usize = 17;
let limbs: usize = 5; let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5; let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n]; let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]); let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| { have.iter_mut().for_each(|x| {
@@ -435,11 +441,11 @@ mod tests {
.next_u64n(u64::MAX, u64::MAX) .next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64; .wrapping_sub(u64::MAX / 2 + 1) as i64;
}); });
a.from_i64(&have, 63, log_k); a.from_i64(log_base2k, &have, 63, log_k);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i))); //(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n]; let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i))); //(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.to_i64(&mut want, log_k); a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b)); izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
} }
#[test] #[test]
@@ -448,7 +454,7 @@ mod tests {
let log_base2k: usize = 17; let log_base2k: usize = 17;
let limbs: usize = 5; let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5; let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs); let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n]; let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]); let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| { have.iter_mut().for_each(|x| {
@@ -456,16 +462,16 @@ mod tests {
.next_u64n(u64::MAX, u64::MAX) .next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64; .wrapping_sub(u64::MAX / 2 + 1) as i64;
}); });
a.from_i64(&have, 63, log_k); a.from_i64(log_base2k, &have, 63, log_k);
let mut carry: Vec<u8> = vec![u8::default(); n * 8]; let mut carry: Vec<u8> = vec![u8::default(); n * 8];
a.normalize(&mut carry); a.normalize(log_base2k, &mut carry);
let base_half = 1 << (log_base2k - 1); let base_half = 1 << (log_base2k - 1);
a.data a.data
.iter() .iter()
.for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half)); .for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
let mut want = vec![i64::default(); n]; let mut want = vec![i64::default(); n];
a.to_i64(&mut want, log_k); a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b)); izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
} }
} }

View File

@@ -4,7 +4,7 @@ use crate::ffi::vec_znx_big::{
vec_znx_bigcoeff_t, vec_znx_bigcoeff_t,
}; };
use crate::ffi::vec_znx_dft::vec_znx_dft_t; use crate::ffi::vec_znx_dft::vec_znx_dft_t;
use crate::Free;
use crate::{Module, VecZnx, VecZnxDft}; use crate::{Module, VecZnx, VecZnxDft};
pub struct VecZnxBig(pub *mut vec_znx_bigcoeff_t, pub usize); pub struct VecZnxBig(pub *mut vec_znx_bigcoeff_t, pub usize);
@@ -16,7 +16,10 @@ impl VecZnxBig {
pub fn limbs(&self) -> usize { pub fn limbs(&self) -> usize {
self.1 self.1
} }
pub fn delete(self) { }
impl Free for VecZnxBig {
fn free(self) {
unsafe { unsafe {
delete_vec_znx_big(self.0); delete_vec_znx_big(self.0);
} }
@@ -139,7 +142,13 @@ impl Module {
} }
// b <- normalize(a) // b <- normalize(a)
pub fn vec_znx_big_normalize(&self, b: &mut VecZnx, a: &VecZnxBig, tmp_bytes: &mut [u8]) { pub fn vec_znx_big_normalize(
&self,
log_base2k: usize,
b: &mut VecZnx,
a: &VecZnxBig,
tmp_bytes: &mut [u8],
) {
let limbs: usize = b.limbs(); let limbs: usize = b.limbs();
assert!( assert!(
b.limbs() >= limbs, b.limbs() >= limbs,
@@ -156,7 +165,7 @@ impl Module {
unsafe { unsafe {
vec_znx_big_normalize_base2k( vec_znx_big_normalize_base2k(
self.0, self.0,
b.log_base2k as u64, log_base2k as u64,
b.as_mut_ptr(), b.as_mut_ptr(),
limbs as u64, limbs as u64,
b.n() as u64, b.n() as u64,

View File

@@ -3,7 +3,7 @@ use crate::ffi::vec_znx_dft::{
delete_vec_znx_dft, new_vec_znx_dft, vec_znx_dft_t, vec_znx_idft, vec_znx_idft_tmp_a, delete_vec_znx_dft, new_vec_znx_dft, vec_znx_dft_t, vec_znx_idft, vec_znx_idft_tmp_a,
vec_znx_idft_tmp_bytes, vec_znx_idft_tmp_bytes,
}; };
use crate::{Module, VecZnxBig}; use crate::{Free, Module, VecZnxBig};
pub struct VecZnxDft(pub *mut vec_znx_dft_t, pub usize); pub struct VecZnxDft(pub *mut vec_znx_dft_t, pub usize);
@@ -14,8 +14,10 @@ impl VecZnxDft {
pub fn limbs(&self) -> usize { pub fn limbs(&self) -> usize {
self.1 self.1
} }
}
pub fn delete(self) { impl Free for VecZnxDft {
fn free(self) {
unsafe { delete_vec_znx_dft(self.0) }; unsafe { delete_vec_znx_dft(self.0) };
drop(self); drop(self);
} }

View File

@@ -1,366 +0,0 @@
use crate::ffi::vmp::{
delete_vmp_pmat, new_vmp_pmat, vmp_apply_dft, vmp_apply_dft_tmp_bytes, vmp_apply_dft_to_dft,
vmp_apply_dft_to_dft_tmp_bytes, vmp_pmat_t, vmp_prepare_contiguous,
vmp_prepare_contiguous_tmp_bytes,
};
use crate::{Module, VecZnx, VecZnxDft};
use std::cmp::min;
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
pub struct VmpPMat {
/// The pointer to the C memory.
pub data: *mut vmp_pmat_t,
/// The number of [VecZnx].
pub rows: usize,
/// The number of limbs in each [VecZnx].
pub cols: usize,
/// The ring degree of each [VecZnx].
pub n: usize,
}
impl VmpPMat {
/// Returns the pointer to the [vmp_pmat_t].
pub fn data(&self) -> *mut vmp_pmat_t {
self.data
}
/// Returns the number of rows of the [VmpPMat].
/// The number of rows (i.e. of [VecZnx]) of the [VmpPMat].
pub fn rows(&self) -> usize {
self.rows
}
/// Returns the number of cols of the [VmpPMat].
/// The number of cols refers to the number of limbs
/// of the prepared [VecZnx].
pub fn cols(&self) -> usize {
self.cols
}
/// Returns the ring dimension of the [VmpPMat].
pub fn n(&self) -> usize {
self.n
}
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
/// When using FFT64 as backend, T should be f64.
/// When using NTT120 as backend, T should be i64.
pub fn at<T: Default + Copy>(&self, row: usize, col: usize) -> Vec<T> {
let mut res: Vec<T> = vec![T::default(); self.n];
if self.n < 8 {
res.copy_from_slice(
&self.get_backend_array::<T>()[(row + col * self.rows()) * self.n()
..(row + col * self.rows()) * (self.n() + 1)],
);
} else {
(0..self.n >> 3).for_each(|blk| {
res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.get_array(row, col, blk)[..8]);
});
}
res
}
/// When using FFT64 as backend, T should be f64.
/// When using NTT120 as backend, T should be i64.
fn get_array<T>(&self, row: usize, col: usize, blk: usize) -> &[T] {
let nrows: usize = self.rows();
let ncols: usize = self.cols();
if col == (ncols - 1) && (ncols & 1 == 1) {
&self.get_backend_array::<T>()[blk * nrows * ncols * 8 + col * nrows * 8 + row * 8..]
} else {
&self.get_backend_array::<T>()[blk * nrows * ncols * 8
+ (col / 2) * (2 * nrows) * 8
+ row * 2 * 8
+ (col % 2) * 8..]
}
}
/// Returns a non-mutable reference of T to the entire contiguous array of the [VmpPMat].
/// When using FFT64 as backend, T should be f64.
/// When using NTT120 as backend, T should be i64.
/// The length of the returned array is rows * cols * n.
pub fn get_backend_array<T>(&self) -> &[T] {
let ptr: *const T = self.data as *const T;
let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::<T>();
unsafe { &std::slice::from_raw_parts(ptr, len) }
}
/// frees the memory and self destructs.
pub fn delete(self) {
unsafe { delete_vmp_pmat(self.data) };
drop(self);
}
}
impl Module {
/// Allocates a new [VmpPMat] with the given number of rows and columns.
pub fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat {
unsafe {
VmpPMat {
data: new_vmp_pmat(self.0, rows as u64, cols as u64),
rows,
cols,
n: self.n(),
}
}
}
/// Returns the number of bytes needed as scratch space for [Self::vmp_prepare_contiguous].
pub fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize {
unsafe { vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
}
/// Prepares a [VmpPMat] given a contiguous array of [i64].
/// The helper struct [Matrix3D] can be used to contruct the
/// appropriate contiguous array.
///
/// # Example
/// ```
/// let mut b_mat: Matrix3D<i64> = Matrix3D::new(rows, cols, n);
///
/// (0..min(rows, cols)).for_each(|i| {
/// b_mat.at_mut(i, i)[1] = 1 as i64;
/// });
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
/// module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
/// ```
pub fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]) {
unsafe {
vmp_prepare_contiguous(
self.0,
b.data(),
a.as_ptr(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
);
}
}
pub fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]) {
let rows: usize = b.rows();
let cols: usize = b.cols();
let mut mat: Matrix3D<i64> = Matrix3D::<i64>::new(rows, cols, self.n());
(0..min(rows, a.len())).for_each(|i| {
mat.set_row(i, &a[i].data);
});
self.vmp_prepare_contiguous(b, &mat.data, buf);
/*
NOT IMPLEMENTED IN SPQLIOS
let mut ptrs: Vec<*const i64> = a.iter().map(|v| v.data.as_ptr()).collect();
unsafe {
vmp_prepare_dblptr(
self.0,
b.data(),
ptrs.as_mut_ptr(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
);
}
*/
}
pub fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
rows as u64,
cols as u64,
) as usize
}
}
pub fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft(
self.0,
c.0,
c.limbs() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.data(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
)
}
}
pub fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_to_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
rows as u64,
cols as u64,
) as usize
}
}
pub fn vmp_apply_dft_to_dft(
&self,
c: &mut VecZnxDft,
a: &VecZnxDft,
b: &VmpPMat,
buf: &mut [u8],
) {
unsafe {
vmp_apply_dft_to_dft(
self.0,
c.0,
c.limbs() as u64,
a.0,
a.limbs() as u64,
b.data(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
)
}
}
pub fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft_to_dft(
self.0,
b.0,
b.limbs() as u64,
b.0,
b.limbs() as u64,
a.data(),
a.rows() as u64,
a.cols() as u64,
buf.as_mut_ptr(),
)
}
}
}
/// A helper struture that stores a 3D matrix as a contiguous array.
/// To be passed to [Module::vmp_prepare_contiguous].
///
/// rows: index of the i-th base2K power.
/// cols: index of the j-th limb of the i-th row.
/// n : polynomial degree.
///
/// A [Matrix3D] can be seen as a vector of [VecZnx].
pub struct Matrix3D<T> {
pub data: Vec<T>,
pub rows: usize,
pub cols: usize,
pub n: usize,
}
impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Allocates a new [Matrix3D] with the respective dimensions.
///
/// # Example
/// ```
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
/// ```
pub fn new(rows: usize, cols: usize, n: usize) -> Self {
let size = rows * cols * n;
Self {
data: vec![T::default(); size],
rows,
cols,
n,
}
}
/// Returns a non-mutable reference to the entry (row, col) of the [Matrix3D].
/// The returned array is of size n.
///
/// # Example
/// ```
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let elem: &[i64] = mat.at(5, 5); // size n
/// ```
pub fn at(&self, row: usize, col: usize) -> &[T] {
assert!(row <= self.rows && col <= self.cols);
let idx: usize = row * (self.n * self.cols) + col * self.n;
&self.data[idx..idx + self.n]
}
/// Returns a mutable reference of the array at the (row, col) entry of the [Matrix3D].
/// The returned array is of size n.
///
/// # Example
/// ```
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let elem: &mut [i64] = mat.at_mut(5, 5); // size n
/// ```
pub fn at_mut(&mut self, row: usize, col: usize) -> &mut [T] {
assert!(row <= self.rows && col <= self.cols);
let idx: usize = row * (self.n * self.cols) + col * self.n;
&mut self.data[idx..idx + self.n]
}
/// Sets the entry \[row\] of the [Matrix3D].
/// Typicall this is used to assign a [VecZnx] to the i-th row
/// of the [Matrix3D].
///
/// # Example
/// ```
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let a: Vec<i64> = VecZnx::new(n, cols);
///
/// mat.set_row(1, &a.data);
/// ```
pub fn set_row(&mut self, row: usize, a: &[T]) {
assert!(
row < self.rows,
"invalid argument row: row={} > self.rows={}",
row,
self.rows
);
let idx: usize = row * (self.n * self.cols);
let size: usize = min(a.len(), self.cols * self.n);
self.data[idx..idx + size].copy_from_slice(&a[..size]);
}
}

592
base2k/src/vmp.rs Normal file
View File

@@ -0,0 +1,592 @@
use crate::ffi::vmp::{
delete_vmp_pmat, new_vmp_pmat, vmp_apply_dft, vmp_apply_dft_tmp_bytes, vmp_apply_dft_to_dft,
vmp_apply_dft_to_dft_tmp_bytes, vmp_pmat_t, vmp_prepare_contiguous,
vmp_prepare_contiguous_tmp_bytes,
};
use crate::Free;
use crate::{Module, VecZnx, VecZnxDft};
use std::cmp::min;
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
/// Each row of the [VmpPMat] can be seen as a [VecZnxDft].
///
/// The backend array of [VmpPMat] is allocate in C,
/// and thus must be manually freed.
///
/// [VmpPMat] is used to permform a vector matrix product between a [VecZnx] and a [VmpPMat].
/// See the trait [VectorMatrixProduct] for additional information.
pub struct VmpPMat {
/// The pointer to the C memory.
pub data: *mut vmp_pmat_t,
/// The number of [VecZnxDft].
pub rows: usize,
/// The number of limbs in each [VecZnxDft].
pub cols: usize,
/// The ring degree of each [VecZnxDft].
pub n: usize,
}
impl VmpPMat {
/// Returns the pointer to the [vmp_pmat_t].
pub fn data(&self) -> *mut vmp_pmat_t {
self.data
}
/// Returns the number of rows of the [VmpPMat].
/// The number of rows (i.e. of [VecZnx]) of the [VmpPMat].
pub fn rows(&self) -> usize {
self.rows
}
/// Returns the number of cols of the [VmpPMat].
/// The number of cols refers to the number of limbs
/// of the prepared [VecZnx].
pub fn cols(&self) -> usize {
self.cols
}
/// Returns the ring dimension of the [VmpPMat].
pub fn n(&self) -> usize {
self.n
}
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
pub fn at<T: Default + Copy>(&self, row: usize, col: usize) -> Vec<T> {
let mut res: Vec<T> = vec![T::default(); self.n];
if self.n < 8 {
res.copy_from_slice(
&self.get_backend_array::<T>()[(row + col * self.rows()) * self.n()
..(row + col * self.rows()) * (self.n() + 1)],
);
} else {
(0..self.n >> 3).for_each(|blk| {
res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.get_array(row, col, blk)[..8]);
});
}
res
}
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
fn get_array<T>(&self, row: usize, col: usize, blk: usize) -> &[T] {
let nrows: usize = self.rows();
let ncols: usize = self.cols();
if col == (ncols - 1) && (ncols & 1 == 1) {
&self.get_backend_array::<T>()[blk * nrows * ncols * 8 + col * nrows * 8 + row * 8..]
} else {
&self.get_backend_array::<T>()[blk * nrows * ncols * 8
+ (col / 2) * (2 * nrows) * 8
+ row * 2 * 8
+ (col % 2) * 8..]
}
}
/// Returns a non-mutable reference of [T] of the entire contiguous array of the [VmpPMat].
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
/// The length of the returned array is rows * cols * n.
pub fn get_backend_array<T>(&self) -> &[T] {
let ptr: *const T = self.data as *const T;
let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::<T>();
unsafe { &std::slice::from_raw_parts(ptr, len) }
}
}
impl Free for VmpPMat {
fn free(self) {
unsafe { delete_vmp_pmat(self.data) };
drop(self);
}
}
/// This trait implements methods for vector matrix product,
/// that is, multiplying a [VecZnx] with a [VmpPMat].
pub trait VectorMatrixProduct {
/// Allocates a new [VmpPMat] with the given number of rows and columns.
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat;
/// Returns the number of bytes needed as scratch space for [VectorMatrixProduct::vmp_prepare_contiguous].
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize;
/// Prepares a [VmpPMat] from a contiguous array of [i64].
/// The helper struct [Matrix3D] can be used to contruct and populate
/// the appropriate contiguous array.
///
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, Matrix3D, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use std::cmp::min;
///
/// let n: usize = 1024;
/// let module = Module::new::<FFT64>(n);
/// let rows = 5;
/// let cols = 6;
///
/// let mut b_mat: Matrix3D<i64> = Matrix3D::new(rows, cols, n);
///
/// // Populates the i-th row of b_math with X^1 * 2^(i * log_w) (here log_w is undefined)
/// (0..min(rows, cols)).for_each(|i| {
/// b_mat.at_mut(i, i)[1] = 1 as i64;
/// });
///
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_contiguous_tmp_bytes(rows, cols)];
///
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
/// module.vmp_prepare_contiguous(&mut vmp_pmat, &b_mat.data, &mut buf);
///
/// vmp_pmat.free() // don't forget to free the memory once vmp_pmat is not needed anymore.
/// ```
fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]);
/// Prepares a [VmpPMat] from a vector of [VecZnx].
///
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, FFT64, Matrix3D, VmpPMat, VecZnx, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use std::cmp::min;
///
/// let n: usize = 1024;
/// let module: Module = Module::new::<FFT64>(n);
/// let rows: usize = 5;
/// let cols: usize = 6;
///
/// let mut vecznx: Vec<VecZnx>= Vec::new();
/// (0..rows).for_each(|_|{
/// vecznx.push(module.new_vec_znx(cols));
/// });
///
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_contiguous_tmp_bytes(rows, cols)];
///
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
/// module.vmp_prepare_dblptr(&mut vmp_pmat, &vecznx, &mut buf);
///
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]);
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft].
fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize;
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
/// ```text
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
/// |h i j|
/// |k l m|
/// ```
/// where each element is a [VecZnxDft].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
///
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let c_limbs: usize = cols;
/// let a_limbs: usize = limbs;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let a: VecZnx = module.new_vec_znx(limbs);
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
///
/// c_dft.free();
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]);
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft_to_dft].
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize;
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
/// ```text
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
/// |h i j|
/// |k l m|
/// ```
/// where each element is a [VecZnxDft].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
///
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let c_limbs: usize = cols;
/// let a_limbs: usize = limbs;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let a_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// module.vmp_apply_dft_to_dft(&mut c_dft, &a_dft, &vmp_pmat, &mut buf);
///
/// a_dft.free();
/// c_dft.free();
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]);
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] in place.
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
/// ```text
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
/// |h i j|
/// |k l m|
/// ```
/// where each element is a [VecZnxDft].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
///
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(limbs, limbs, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let a: VecZnx = module.new_vec_znx(limbs);
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
/// module.vmp_apply_dft_to_dft_inplace(&mut c_dft, &vmp_pmat, &mut buf);
///
/// c_dft.free();
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]);
}
impl VectorMatrixProduct for Module {
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat {
unsafe {
VmpPMat {
data: new_vmp_pmat(self.0, rows as u64, cols as u64),
rows,
cols,
n: self.n(),
}
}
}
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize {
unsafe { vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
}
fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]) {
unsafe {
vmp_prepare_contiguous(
self.0,
b.data(),
a.as_ptr(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
);
}
}
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]) {
let rows: usize = b.rows();
let cols: usize = b.cols();
let mut mat: Matrix3D<i64> = Matrix3D::<i64>::new(rows, cols, self.n());
(0..min(rows, a.len())).for_each(|i| {
mat.set_row(i, &a[i].data);
});
self.vmp_prepare_contiguous(b, &mat.data, buf);
/*
NOT IMPLEMENTED IN SPQLIOS
let mut ptrs: Vec<*const i64> = a.iter().map(|v| v.data.as_ptr()).collect();
unsafe {
vmp_prepare_dblptr(
self.0,
b.data(),
ptrs.as_mut_ptr(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
);
}
*/
}
fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
rows as u64,
cols as u64,
) as usize
}
}
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft(
self.0,
c.0,
c.limbs() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.data(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
)
}
}
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_to_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
rows as u64,
cols as u64,
) as usize
}
}
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft_to_dft(
self.0,
c.0,
c.limbs() as u64,
a.0,
a.limbs() as u64,
b.data(),
b.rows() as u64,
b.cols() as u64,
buf.as_mut_ptr(),
)
}
}
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft_to_dft(
self.0,
b.0,
b.limbs() as u64,
b.0,
b.limbs() as u64,
a.data(),
a.rows() as u64,
a.cols() as u64,
buf.as_mut_ptr(),
)
}
}
}
/// A helper struture that stores a 3D matrix as a contiguous array.
/// To be passed to [VectorMatrixProduct::vmp_prepare_contiguous].
///
/// rows: index of the i-th base2K power.
/// cols: index of the j-th limb of the i-th row.
/// n : polynomial degree.
///
/// A [Matrix3D] can be seen as a vector of [VecZnx].
pub struct Matrix3D<T> {
pub data: Vec<T>,
pub rows: usize,
pub cols: usize,
pub n: usize,
}
impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Allocates a new [Matrix3D] with the respective dimensions.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
///
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
/// ```
pub fn new(rows: usize, cols: usize, n: usize) -> Self {
let size = rows * cols * n;
Self {
data: vec![T::default(); size],
rows,
cols,
n,
}
}
/// Returns a non-mutable reference to the entry (row, col) of the [Matrix3D].
/// The returned array is of size n.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
///
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let elem: &[i64] = mat.at(4, 4); // size n
/// ```
pub fn at(&self, row: usize, col: usize) -> &[T] {
assert!(row < self.rows && col < self.cols);
let idx: usize = row * (self.n * self.cols) + col * self.n;
&self.data[idx..idx + self.n]
}
/// Returns a mutable reference of the array at the (row, col) entry of the [Matrix3D].
/// The returned array is of size n.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
///
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let elem: &mut [i64] = mat.at_mut(4, 4); // size n
/// ```
pub fn at_mut(&mut self, row: usize, col: usize) -> &mut [T] {
assert!(row < self.rows && col < self.cols);
let idx: usize = row * (self.n * self.cols) + col * self.n;
&mut self.data[idx..idx + self.n]
}
/// Sets the entry \[row\] of the [Matrix3D].
/// Typicall this is used to assign a [VecZnx] to the i-th row
/// of the [Matrix3D].
///
/// # Example
/// ```
/// use base2k::{Matrix3D, VecZnx};
///
/// let rows = 5; // #decomp
/// let cols = 5; // #limbs
/// let n = 1024; // #coeffs
///
/// let mut mat = Matrix3D::<i64>::new(rows, cols, n);
///
/// let a: VecZnx = VecZnx::new(n, cols);
///
/// mat.set_row(1, &a.data);
/// ```
pub fn set_row(&mut self, row: usize, a: &[T]) {
assert!(
row < self.rows,
"invalid argument row: row={} > self.rows={}",
row,
self.rows
);
let idx: usize = row * (self.n * self.cols);
let size: usize = min(a.len(), self.cols * self.n);
self.data[idx..idx + size].copy_from_slice(&a[..size]);
}
}