use crate::ffi::vec_znx_big; use crate::ffi::vec_znx_dft; use crate::ffi::vec_znx_dft::bytes_of_vec_znx_dft; use crate::{Module, VecZnx, VecZnxBig}; pub struct VecZnxDft(pub *mut vec_znx_dft::vec_znx_dft_t, pub usize); impl VecZnxDft { /// Returns a new [VecZnxDft] with the provided data as backing array. /// User must ensure that data is properly alligned and that /// the size of data is at least equal to [Module::bytes_of_vec_znx_dft]. pub fn from_bytes(limbs: usize, data: &mut [u8]) -> VecZnxDft { VecZnxDft(data.as_mut_ptr() as *mut vec_znx_dft::vec_znx_dft_t, limbs) } /// Cast a [VecZnxDft] into a [VecZnxBig]. /// The returned [VecZnxBig] shares the backing array /// with the original [VecZnxDft]. pub fn as_vec_znx_big(&mut self) -> VecZnxBig { VecZnxBig(self.0 as *mut vec_znx_big::vec_znx_bigcoeff_t, self.1) } pub fn limbs(&self) -> usize { self.1 } } impl Module { // Allocates a vector Z[X]/(X^N+1) that stores normalized in the DFT space. pub fn new_vec_znx_dft(&self, limbs: usize) -> VecZnxDft { unsafe { VecZnxDft(vec_znx_dft::new_vec_znx_dft(self.0, limbs as u64), limbs) } } /// Returns a new [VecZnxDft] with the provided bytes array as backing array. /// /// # Arguments /// /// * `limbs`: the number of limbs of the [VecZnxDft]. /// * `bytes`: a byte array of size at least [Module::bytes_of_vec_znx_dft]. /// /// # Panics /// If `bytes.len()` < [Module::bytes_of_vec_znx_dft]. pub fn new_vec_znx_from_bytes(&self, limbs: usize, bytes: &mut [u8]) -> VecZnxDft { assert!( bytes.len() >= self.bytes_of_vec_znx_dft(limbs), "invalid bytes: bytes.len()={} < bytes_of_vec_znx_dft={}", bytes.len(), self.bytes_of_vec_znx_dft(limbs) ); VecZnxDft::from_bytes(limbs, bytes) } /// Returns the minimum number of bytes necessary to allocate /// a new [VecZnxDft] through [VecZnxDft::from_bytes]. pub fn bytes_of_vec_znx_dft(&self, limbs: usize) -> usize { unsafe { bytes_of_vec_znx_dft(self.0, limbs as u64) as usize } } // b <- IDFT(a), uses a as scratch space. pub fn vec_znx_idft_tmp_a(&self, b: &mut VecZnxBig, a: &mut VecZnxDft, a_limbs: usize) { assert!( b.limbs() >= a_limbs, "invalid c_vector: b_vector.limbs()={} < a_limbs={}", b.limbs(), a_limbs ); unsafe { vec_znx_dft::vec_znx_idft_tmp_a(self.0, b.0, a_limbs as u64, a.0, a_limbs as u64) } } // Returns the size of the scratch space for [vec_znx_idft]. pub fn vec_znx_idft_tmp_bytes(&self) -> usize { unsafe { vec_znx_dft::vec_znx_idft_tmp_bytes(self.0) as usize } } /// b <- DFT(a) /// /// # Panics /// If b.limbs < a_limbs pub fn vec_znx_dft(&self, b: &mut VecZnxDft, a: &VecZnx, a_limbs: usize) { assert!( b.limbs() >= a_limbs, "invalid a_limbs: b.limbs()={} < a_limbs={}", b.limbs(), a_limbs ); unsafe { vec_znx_dft::vec_znx_dft( self.0, b.0, a_limbs as u64, a.as_ptr(), a_limbs as u64, a.n as u64, ) } } // b <- IDFT(a), scratch space size obtained with [vec_znx_idft_tmp_bytes]. pub fn vec_znx_idft( &self, b_vector: &mut VecZnxBig, a_vector: &mut VecZnxDft, a_limbs: usize, tmp_bytes: &mut [u8], ) { assert!( b_vector.limbs() >= a_limbs, "invalid c_vector: b_vector.limbs()={} < a_limbs={}", b_vector.limbs(), a_limbs ); assert!( a_vector.limbs() >= a_limbs, "invalid c_vector: c_vector.limbs()={} < a_limbs={}", a_vector.limbs(), a_limbs ); assert!( tmp_bytes.len() <= self.vec_znx_idft_tmp_bytes(), "invalid tmp_bytes: tmp_bytes.len()={} < self.vec_znx_idft_tmp_bytes()={}", tmp_bytes.len(), self.vec_znx_idft_tmp_bytes() ); unsafe { vec_znx_dft::vec_znx_idft( self.0, b_vector.0, a_limbs as u64, a_vector.0, a_limbs as u64, tmp_bytes.as_mut_ptr(), ) } } }