use crate::ciphertext::Ciphertext; use crate::elem::{Elem, ElemCommon, ElemVecZnx}; use crate::keys::SecretKey; use crate::parameters::Parameters; use crate::plaintext::Plaintext; use base2k::sampling::Sampling; use base2k::{ ZnxInfos, Module, Scalar, ScalarZnxDft, ScalarZnxDftOps, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, VecZnxOps, MatZnxDft, MatZnxDftOps, }; use sampling::source::{Source, new_seed}; impl Parameters { pub fn encrypt_rlwe_sk_tmp_bytes(&self, log_q: usize) -> usize { encrypt_rlwe_sk_tmp_bytes(self.module(), self.log_base2k(), log_q) } pub fn encrypt_rlwe_sk( &self, ct: &mut Ciphertext, pt: Option<&Plaintext>, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, tmp_bytes: &mut [u8], ) { encrypt_rlwe_sk( self.module(), &mut ct.0, pt.map(|pt| pt.at(0)), sk, source_xa, source_xe, self.xe(), tmp_bytes, ) } } pub struct EncryptorSk { sk: ScalarZnxDft, source_xa: Source, source_xe: Source, initialized: bool, tmp_bytes: Vec, } impl EncryptorSk { pub fn new(params: &Parameters, sk: Option<&SecretKey>) -> Self { let mut sk_svp_ppol: ScalarZnxDft = params.module().new_svp_ppol(); let mut initialized: bool = false; if let Some(sk) = sk { sk.prepare(params.module(), &mut sk_svp_ppol); initialized = true; } Self { sk: sk_svp_ppol, initialized, source_xa: Source::new(new_seed()), source_xe: Source::new(new_seed()), tmp_bytes: vec![0u8; params.encrypt_rlwe_sk_tmp_bytes(params.cols_qp())], } } pub fn set_sk(&mut self, module: &Module, sk: &SecretKey) { sk.prepare(module, &mut self.sk); self.initialized = true; } pub fn seed_source_xa(&mut self, seed: [u8; 32]) { self.source_xa = Source::new(seed) } pub fn seed_source_xe(&mut self, seed: [u8; 32]) { self.source_xe = Source::new(seed) } pub fn encrypt_rlwe_sk(&mut self, params: &Parameters, ct: &mut Ciphertext, pt: Option<&Plaintext>) { assert!( self.initialized == true, "invalid call to [EncryptorSk.encrypt_rlwe_sk]: [EncryptorSk] has not been initialized with a [SecretKey]" ); params.encrypt_rlwe_sk( ct, pt, &self.sk, &mut self.source_xa, &mut self.source_xe, &mut self.tmp_bytes, ); } pub fn encrypt_rlwe_sk_core( &self, params: &Parameters, ct: &mut Ciphertext, pt: Option<&Plaintext>, source_xa: &mut Source, source_xe: &mut Source, tmp_bytes: &mut [u8], ) { assert!( self.initialized == true, "invalid call to [EncryptorSk.encrypt_rlwe_sk]: [EncryptorSk] has not been initialized with a [SecretKey]" ); params.encrypt_rlwe_sk(ct, pt, &self.sk, source_xa, source_xe, tmp_bytes); } } pub fn encrypt_rlwe_sk_tmp_bytes(module: &Module, log_base2k: usize, log_q: usize) -> usize { module.bytes_of_vec_znx_dft(1, (log_q + log_base2k - 1) / log_base2k) + module.vec_znx_big_normalize_tmp_bytes() } pub fn encrypt_rlwe_sk( module: &Module, ct: &mut Elem, pt: Option<&VecZnx>, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, tmp_bytes: &mut [u8], ) { encrypt_rlwe_sk_core::<0>(module, ct, pt, sk, source_xa, source_xe, sigma, tmp_bytes) } fn encrypt_rlwe_sk_core( module: &Module, ct: &mut Elem, pt: Option<&VecZnx>, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, tmp_bytes: &mut [u8], ) { let cols: usize = ct.cols(); let log_base2k: usize = ct.log_base2k(); let log_q: usize = ct.log_q(); assert!( tmp_bytes.len() >= encrypt_rlwe_sk_tmp_bytes(module, log_base2k, log_q), "invalid tmp_bytes: tmp_bytes={} < encrypt_rlwe_sk_tmp_bytes={}", tmp_bytes.len(), encrypt_rlwe_sk_tmp_bytes(module, log_base2k, log_q) ); let log_q: usize = ct.log_q(); let log_base2k: usize = ct.log_base2k(); let c1: &mut VecZnx = ct.at_mut(1); // c1 <- Z_{2^prec}[X]/(X^{N}+1) module.fill_uniform(log_base2k, c1, cols, source_xa); let (tmp_bytes_vec_znx_dft, tmp_bytes_normalize) = tmp_bytes.split_at_mut(module.bytes_of_vec_znx_dft(1, cols)); // Scratch space for DFT values let mut buf_dft: VecZnxDft = VecZnxDft::from_bytes_borrow(module, 1, cols, tmp_bytes_vec_znx_dft); // Applies buf_dft <- DFT(s) * DFT(c1) module.svp_apply_dft(&mut buf_dft, sk, c1); // Alias scratch space let mut buf_big: VecZnxBig = buf_dft.as_vec_znx_big(); // buf_big = s x c1 module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft); match PT_POS { // c0 <- -s x c1 + m 0 => { let c0: &mut VecZnx = ct.at_mut(0); if let Some(pt) = pt { module.vec_znx_big_sub_small_a_inplace(&mut buf_big, pt); module.vec_znx_big_normalize(log_base2k, c0, &buf_big, tmp_bytes_normalize); } else { module.vec_znx_big_normalize(log_base2k, c0, &buf_big, tmp_bytes_normalize); module.vec_znx_negate_inplace(c0); } } // c1 <- c1 + m 1 => { if let Some(pt) = pt { module.vec_znx_add_inplace(c1, pt); c1.normalize(log_base2k, tmp_bytes_normalize); } let c0: &mut VecZnx = ct.at_mut(0); module.vec_znx_big_normalize(log_base2k, c0, &buf_big, tmp_bytes_normalize); module.vec_znx_negate_inplace(c0); } _ => panic!("PT_POS must be 1 or 2"), } // c0 <- -s x c1 + m + e module.add_normal( log_base2k, ct.at_mut(0), log_q, source_xe, sigma, (sigma * 6.0).ceil(), ); } impl Parameters { pub fn encrypt_grlwe_sk_tmp_bytes(&self, rows: usize, log_q: usize) -> usize { encrypt_grlwe_sk_tmp_bytes(self.module(), self.log_base2k(), rows, log_q) } } pub fn encrypt_grlwe_sk_tmp_bytes(module: &Module, log_base2k: usize, rows: usize, log_q: usize) -> usize { let cols = (log_q + log_base2k - 1) / log_base2k; Elem::::bytes_of(module, log_base2k, log_q, 2) + Plaintext::bytes_of(module, log_base2k, log_q) + encrypt_rlwe_sk_tmp_bytes(module, log_base2k, log_q) + module.vmp_prepare_tmp_bytes(rows, cols) } pub fn encrypt_grlwe_sk( module: &Module, ct: &mut Ciphertext, m: &Scalar, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, tmp_bytes: &mut [u8], ) { let log_q: usize = ct.log_q(); let log_base2k: usize = ct.log_base2k(); let (left, right) = ct.0.value.split_at_mut(1); encrypt_grlwe_sk_core::<0>( module, log_base2k, [&mut left[0], &mut right[0]], log_q, m, sk, source_xa, source_xe, sigma, tmp_bytes, ) } impl Parameters { pub fn encrypt_rgsw_sk_tmp_bytes(&self, rows: usize, log_q: usize) -> usize { encrypt_rgsw_sk_tmp_bytes(self.module(), self.log_base2k(), rows, log_q) } } pub fn encrypt_rgsw_sk_tmp_bytes(module: &Module, log_base2k: usize, rows: usize, log_q: usize) -> usize { let cols = (log_q + log_base2k - 1) / log_base2k; Elem::::bytes_of(module, log_base2k, log_q, 2) + Plaintext::bytes_of(module, log_base2k, log_q) + encrypt_rlwe_sk_tmp_bytes(module, log_base2k, log_q) + module.vmp_prepare_tmp_bytes(rows, cols) } pub fn encrypt_rgsw_sk( module: &Module, ct: &mut Ciphertext, m: &Scalar, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, tmp_bytes: &mut [u8], ) { let log_q: usize = ct.log_q(); let log_base2k: usize = ct.log_base2k(); let (left, right) = ct.0.value.split_at_mut(2); let (ll, lr) = left.split_at_mut(1); let (rl, rr) = right.split_at_mut(1); encrypt_grlwe_sk_core::<0>( module, log_base2k, [&mut ll[0], &mut lr[0]], log_q, m, sk, source_xa, source_xe, sigma, tmp_bytes, ); encrypt_grlwe_sk_core::<1>( module, log_base2k, [&mut rl[0], &mut rr[0]], log_q, m, sk, source_xa, source_xe, sigma, tmp_bytes, ); } fn encrypt_grlwe_sk_core( module: &Module, log_base2k: usize, mut ct: [&mut MatZnxDft; 2], log_q: usize, m: &Scalar, sk: &ScalarZnxDft, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, tmp_bytes: &mut [u8], ) { let rows: usize = ct[0].rows(); let min_tmp_bytes_len = encrypt_grlwe_sk_tmp_bytes(module, log_base2k, rows, log_q); assert!( tmp_bytes.len() >= min_tmp_bytes_len, "invalid tmp_bytes: tmp_bytes.len()={} < encrypt_grlwe_sk_tmp_bytes={}", tmp_bytes.len(), min_tmp_bytes_len ); let bytes_of_elem: usize = Elem::::bytes_of(module, log_base2k, log_q, 2); let bytes_of_pt: usize = Plaintext::bytes_of(module, log_base2k, log_q); let bytes_of_enc_sk: usize = encrypt_rlwe_sk_tmp_bytes(module, log_base2k, log_q); let (tmp_bytes_pt, tmp_bytes) = tmp_bytes.split_at_mut(bytes_of_pt); let (tmp_bytes_enc_sk, tmp_bytes) = tmp_bytes.split_at_mut(bytes_of_enc_sk); let (tmp_bytes_elem, tmp_bytes_vmp_prepare_row) = tmp_bytes.split_at_mut(bytes_of_elem); let mut tmp_elem: Elem = Elem::::from_bytes_borrow(module, log_base2k, log_q, 2, tmp_bytes_elem); let mut tmp_pt: Plaintext = Plaintext::from_bytes_borrow(module, log_base2k, log_q, tmp_bytes_pt); (0..rows).for_each(|row_i| { // Sets the i-th row of the RLWE sample to m (i.e. m * 2^{-log_base2k*i}) tmp_pt.at_mut(0).at_mut(row_i).copy_from_slice(&m.raw()); // Encrypts RLWE(m * 2^{-log_base2k*i}) encrypt_rlwe_sk_core::( module, &mut tmp_elem, Some(tmp_pt.at(0)), sk, source_xa, source_xe, sigma, tmp_bytes_enc_sk, ); // Zeroes the ith-row of tmp_pt tmp_pt.at_mut(0).at_mut(row_i).fill(0); // GRLWE[row_i][0||1] = [-as + m * 2^{-i*log_base2k} + e*2^{-log_q} || a] module.vmp_prepare_row( ct[0], tmp_elem.at(0).raw(), row_i, tmp_bytes_vmp_prepare_row, ); module.vmp_prepare_row( &mut ct[1], tmp_elem.at(1).raw(), row_i, tmp_bytes_vmp_prepare_row, ); }); }