use base2k::{ AddNormal, Decoding, Encoding, FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc, ScalarZnxDftOps, ScratchOwned, VecZnx, VecZnxAlloc, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, ZnxInfos, }; use itertools::izip; use sampling::source::Source; fn main() { let n: usize = 16; let log_base2k: usize = 18; let ct_size: usize = 3; let msg_size: usize = 2; let log_scale: usize = msg_size * log_base2k - 5; let module: Module = Module::::new(n); let mut scratch: ScratchOwned = ScratchOwned::new(module.vec_znx_big_normalize_tmp_bytes()); let seed: [u8; 32] = [0; 32]; let mut source: Source = Source::new(seed); // s <- Z_{-1, 0, 1}[X]/(X^{N}+1) let mut s: ScalarZnx> = module.new_scalar_znx(1); s.fill_ternary_prob(0, 0.5, &mut source); // Buffer to store s in the DFT domain let mut s_dft: ScalarZnxDft, FFT64> = module.new_scalar_znx_dft(s.cols()); // s_dft <- DFT(s) module.svp_prepare(&mut s_dft, 0, &s, 0); // Allocates a VecZnx with two columns: ct=(0, 0) let mut ct: VecZnx> = module.new_vec_znx( 2, // Number of columns ct_size, // Number of small poly per column ); // Fill the second column with random values: ct = (0, a) ct.fill_uniform(log_base2k, 1, ct_size, &mut source); let mut buf_dft: VecZnxDft, FFT64> = module.new_vec_znx_dft(1, ct_size); module.vec_znx_dft(&mut buf_dft, 0, &ct, 1); // Applies DFT(ct[1]) * DFT(s) module.svp_apply_inplace( &mut buf_dft, // DFT(ct[1] * s) 0, // Selects the first column of res &s_dft, // DFT(s) 0, // Selects the first column of s_dft ); // Alias scratch space (VecZnxDft is always at least as big as VecZnxBig) // BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized) let mut buf_big: VecZnxBig, FFT64> = module.new_vec_znx_big(1, ct_size); module.vec_znx_idft_tmp_a(&mut buf_big, 0, &mut buf_dft, 0); // Creates a plaintext: VecZnx with 1 column let mut m = module.new_vec_znx( 1, // Number of columns msg_size, // Number of small polynomials ); let mut want: Vec = vec![0; n]; want.iter_mut() .for_each(|x| *x = source.next_u64n(16, 15) as i64); m.encode_vec_i64(0, log_base2k, log_scale, &want, 4); module.vec_znx_normalize_inplace(log_base2k, &mut m, 0, scratch.borrow()); // m - BIG(ct[1] * s) module.vec_znx_big_sub_small_b_inplace( &mut buf_big, 0, // Selects the first column of the receiver &m, 0, // Selects the first column of the message ); // Normalizes back to VecZnx // ct[0] <- m - BIG(c1 * s) module.vec_znx_big_normalize( log_base2k, &mut ct, 0, // Selects the first column of ct (ct[0]) &buf_big, 0, // Selects the first column of buf_big scratch.borrow(), ); // Add noise to ct[0] // ct[0] <- ct[0] + e ct.add_normal( log_base2k, 0, // Selects the first column of ct (ct[0]) log_base2k * ct_size, // Scaling of the noise: 2^{-log_base2k * limbs} &mut source, 3.2, // Standard deviation 19.0, // Truncatation bound ); // Final ciphertext: ct = (-a * s + m + e, a) // Decryption // DFT(ct[1] * s) module.vec_znx_dft(&mut buf_dft, 0, &ct, 1); module.svp_apply_inplace( &mut buf_dft, 0, // Selects the first column of res. &s_dft, 0, ); // BIG(c1 * s) = IDFT(DFT(c1 * s)) module.vec_znx_idft_tmp_a(&mut buf_big, 0, &mut buf_dft, 0); // BIG(c1 * s) + ct[0] module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0); // m + e <- BIG(ct[1] * s + ct[0]) let mut res = module.new_vec_znx(1, ct_size); module.vec_znx_big_normalize(log_base2k, &mut res, 0, &buf_big, 0, scratch.borrow()); // have = m * 2^{log_scale} + e let mut have: Vec = vec![i64::default(); n]; res.decode_vec_i64(0, log_base2k, res.size() * log_base2k, &mut have); let scale: f64 = (1 << (res.size() * log_base2k - log_scale)) as f64; izip!(want.iter(), have.iter()) .enumerate() .for_each(|(i, (a, b))| { println!("{}: {} {}", i, a, (*b as f64) / scale); }); module.free(); }