use backend::{ Backend, FFT64, MatZnxDft, MatZnxDftAlloc, MatZnxDftOps, MatZnxDftScratch, Module, ScalarZnx, Scratch, VecZnxAlloc, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, VecZnxToMut, ZnxInfos, ZnxZero, }; use sampling::source::Source; use crate::{ FourierGLWECiphertext, FourierGLWESecret, GLWEAutomorphismKey, GLWECiphertext, GLWESwitchingKey, GLWETensorKey, GetRow, Infos, ScratchCore, SetRow, }; pub struct GGSWCiphertext { pub(crate) data: MatZnxDft, pub(crate) basek: usize, pub(crate) k: usize, pub(crate) digits: usize, } impl GGSWCiphertext, FFT64> { pub fn alloc(module: &Module, basek: usize, k: usize, rows: usize, digits: usize, rank: usize) -> Self { let size: usize = k.div_ceil(basek); debug_assert!(digits > 0, "invalid ggsw: `digits` == 0"); debug_assert!( size > digits, "invalid ggsw: ceil(k/basek): {} <= digits: {}", size, digits ); assert!( rows * digits <= size, "invalid ggsw: rows: {} * digits:{} > ceil(k/basek): {}", rows, digits, size ); Self { data: module.new_mat_znx_dft(rows, rank + 1, rank + 1, k.div_ceil(basek)), basek, k: k, digits, } } pub fn bytes_of(module: &Module, basek: usize, k: usize, rows: usize, digits: usize, rank: usize) -> usize { let size: usize = k.div_ceil(basek); debug_assert!( size > digits, "invalid ggsw: ceil(k/basek): {} <= digits: {}", size, digits ); assert!( rows * digits <= size, "invalid ggsw: rows: {} * digits:{} > ceil(k/basek): {}", rows, digits, size ); module.bytes_of_mat_znx_dft(rows, rank + 1, rank + 1, size) } } impl Infos for GGSWCiphertext { type Inner = MatZnxDft; fn inner(&self) -> &Self::Inner { &self.data } fn basek(&self) -> usize { self.basek } fn k(&self) -> usize { self.k } } impl GGSWCiphertext { pub fn rank(&self) -> usize { self.data.cols_out() - 1 } pub fn digits(&self) -> usize { self.digits } } impl GGSWCiphertext, FFT64> { pub fn encrypt_sk_scratch_space(module: &Module, basek: usize, k: usize, rank: usize) -> usize { let size = k.div_ceil(basek); GLWECiphertext::encrypt_sk_scratch_space(module, basek, k) + module.bytes_of_vec_znx(rank + 1, size) + module.bytes_of_vec_znx(1, size) + module.bytes_of_vec_znx_dft(rank + 1, size) } pub(crate) fn expand_row_scratch_space( module: &Module, basek: usize, self_k: usize, k_tsk: usize, digits: usize, rank: usize, ) -> usize { let tsk_size: usize = k_tsk.div_ceil(basek); let self_size_out: usize = self_k.div_ceil(basek); let self_size_in: usize = self_size_out.div_ceil(digits); let tmp_dft_i: usize = module.bytes_of_vec_znx_dft(rank + 1, tsk_size); let tmp_a: usize = module.bytes_of_vec_znx_dft(1, self_size_in); let vmp: usize = module.vmp_apply_tmp_bytes( self_size_out, self_size_in, self_size_in, rank, rank, tsk_size, ); let tmp_idft: usize = module.bytes_of_vec_znx_big(1, tsk_size); let norm: usize = module.vec_znx_big_normalize_tmp_bytes(); tmp_dft_i + ((tmp_a + vmp) | (tmp_idft + norm)) } pub(crate) fn keyswitch_internal_col0_scratch_space( module: &Module, basek: usize, k_out: usize, k_in: usize, k_ksk: usize, digits: usize, rank: usize, ) -> usize { GLWECiphertext::keyswitch_from_fourier_scratch_space(module, basek, k_out, k_in, k_ksk, digits, rank, rank) + module.bytes_of_vec_znx_dft(rank + 1, k_in.div_ceil(basek)) } pub fn keyswitch_scratch_space( module: &Module, basek: usize, k_out: usize, k_in: usize, k_ksk: usize, digits_ksk: usize, k_tsk: usize, digits_tsk: usize, rank: usize, ) -> usize { let out_size: usize = k_out.div_ceil(basek); let res_znx: usize = module.bytes_of_vec_znx(rank + 1, out_size); let ci_dft: usize = module.bytes_of_vec_znx_dft(rank + 1, out_size); let ks: usize = GGSWCiphertext::keyswitch_internal_col0_scratch_space(module, basek, k_out, k_in, k_ksk, digits_ksk, rank); let expand_rows: usize = GGSWCiphertext::expand_row_scratch_space(module, basek, k_out, k_tsk, digits_tsk, rank); let res_dft: usize = module.bytes_of_vec_znx_dft(rank + 1, out_size); res_znx + ci_dft + (ks | expand_rows | res_dft) } pub fn keyswitch_inplace_scratch_space( module: &Module, basek: usize, k_out: usize, k_ksk: usize, digits_ksk: usize, k_tsk: usize, digits_tsk: usize, rank: usize, ) -> usize { GGSWCiphertext::keyswitch_scratch_space( module, basek, k_out, k_out, k_ksk, digits_ksk, k_tsk, digits_tsk, rank, ) } pub fn automorphism_scratch_space( module: &Module, basek: usize, k_out: usize, k_in: usize, k_ksk: usize, digits_ksk: usize, k_tsk: usize, digits_tsk: usize, rank: usize, ) -> usize { let cols: usize = rank + 1; let out_size: usize = k_out.div_ceil(basek); let res: usize = module.bytes_of_vec_znx(cols, out_size); let res_dft: usize = module.bytes_of_vec_znx_dft(cols, out_size); let ci_dft: usize = module.bytes_of_vec_znx_dft(cols, out_size); let ks_internal: usize = GGSWCiphertext::keyswitch_internal_col0_scratch_space(module, basek, k_out, k_in, k_ksk, digits_ksk, rank); let expand: usize = GGSWCiphertext::expand_row_scratch_space(module, basek, k_out, k_tsk, digits_tsk, rank); res + ci_dft + (ks_internal | expand | res_dft) } pub fn automorphism_inplace_scratch_space( module: &Module, basek: usize, k_out: usize, k_ksk: usize, digits_ksk: usize, k_tsk: usize, digits_tsk: usize, rank: usize, ) -> usize { GGSWCiphertext::automorphism_scratch_space( module, basek, k_out, k_out, k_ksk, digits_ksk, k_tsk, digits_tsk, rank, ) } pub fn external_product_scratch_space( module: &Module, basek: usize, k_out: usize, k_in: usize, k_ggsw: usize, digits: usize, rank: usize, ) -> usize { let tmp_in: usize = FourierGLWECiphertext::bytes_of(module, basek, k_in, rank); let tmp_out: usize = FourierGLWECiphertext::bytes_of(module, basek, k_out, rank); let ggsw: usize = FourierGLWECiphertext::external_product_scratch_space(module, basek, k_out, k_in, k_ggsw, digits, rank); tmp_in + tmp_out + ggsw } pub fn external_product_inplace_scratch_space( module: &Module, basek: usize, k_out: usize, k_ggsw: usize, digits: usize, rank: usize, ) -> usize { let tmp: usize = FourierGLWECiphertext::bytes_of(module, basek, k_out, rank); let ggsw: usize = FourierGLWECiphertext::external_product_inplace_scratch_space(module, basek, k_out, k_ggsw, digits, rank); tmp + ggsw } } impl + AsRef<[u8]>> GGSWCiphertext { pub fn encrypt_sk, DataSk: AsRef<[u8]>>( &mut self, module: &Module, pt: &ScalarZnx, sk: &FourierGLWESecret, source_xa: &mut Source, source_xe: &mut Source, sigma: f64, scratch: &mut Scratch, ) { #[cfg(debug_assertions)] { assert_eq!(self.rank(), sk.rank()); assert_eq!(self.n(), module.n()); assert_eq!(pt.n(), module.n()); assert_eq!(sk.n(), module.n()); } let basek: usize = self.basek(); let k: usize = self.k(); let rank: usize = self.rank(); let digits: usize = self.digits(); let (mut tmp_pt, scratch1) = scratch.tmp_glwe_pt(module, basek, k); let (mut tmp_ct, scratch2) = scratch1.tmp_glwe_ct(module, basek, k, rank); (0..self.rows()).for_each(|row_i| { tmp_pt.data.zero(); // Adds the scalar_znx_pt to the i-th limb of the vec_znx_pt module.vec_znx_add_scalar_inplace(&mut tmp_pt.data, 0, (digits - 1) + row_i * digits, pt, 0); module.vec_znx_normalize_inplace(basek, &mut tmp_pt.data, 0, scratch2); (0..rank + 1).for_each(|col_j| { // rlwe encrypt of vec_znx_pt into vec_znx_ct tmp_ct.encrypt_sk_private( module, Some((&tmp_pt, col_j)), sk, source_xa, source_xe, sigma, scratch2, ); // Switch vec_znx_ct into DFT domain { let (mut tmp_ct_dft, _) = scratch2.tmp_fourier_glwe_ct(module, basek, k, rank); tmp_ct.dft(module, &mut tmp_ct_dft); self.set_row(module, row_i, col_j, &tmp_ct_dft); } }); }); } pub(crate) fn expand_row, DataTsk: AsRef<[u8]>>( &mut self, module: &Module, col_j: usize, res: &mut R, ci_dft: &VecZnxDft, tsk: &GLWETensorKey, scratch: &mut Scratch, ) where R: VecZnxToMut, { let cols: usize = self.rank() + 1; assert!( scratch.available() >= GGSWCiphertext::expand_row_scratch_space( module, self.basek(), self.k(), tsk.k(), tsk.digits(), tsk.rank() ) ); // Example for rank 3: // // Note: M is a vector (m, Bm, B^2m, B^3m, ...), so each column is // actually composed of that many rows and we focus on a specific row here // implicitely given ci_dft. // // # Input // // col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0 , a1 , a2 ) // col 1: (0, 0, 0, 0) // col 2: (0, 0, 0, 0) // col 3: (0, 0, 0, 0) // // # Output // // col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0 , a1 , a2 ) // col 1: (-(b0s0 + b1s1 + b2s2) , b0 + M[i], b1 , b2 ) // col 2: (-(c0s0 + c1s1 + c2s2) , c0 , c1 + M[i], c2 ) // col 3: (-(d0s0 + d1s1 + d2s2) , d0 , d1 , d2 + M[i]) let digits: usize = tsk.digits(); let (mut tmp_dft_i, scratch1) = scratch.tmp_vec_znx_dft(module, cols, tsk.size()); let (mut tmp_a, scratch2) = scratch1.tmp_vec_znx_dft(module, 1, (ci_dft.size() + digits - 1) / digits); { // Performs a key-switch for each combination of s[i]*s[j], i.e. for a0, a1, a2 // // # Example for col=1 // // a0 * (-(f0s0 + f1s1 + f1s2) + s0^2, f0, f1, f2) = (-(a0f0s0 + a0f1s1 + a0f1s2) + a0s0^2, a0f0, a0f1, a0f2) // + // a1 * (-(g0s0 + g1s1 + g1s2) + s0s1, g0, g1, g2) = (-(a1g0s0 + a1g1s1 + a1g1s2) + a1s0s1, a1g0, a1g1, a1g2) // + // a2 * (-(h0s0 + h1s1 + h1s2) + s0s2, h0, h1, h2) = (-(a2h0s0 + a2h1s1 + a2h1s2) + a2s0s2, a2h0, a2h1, a2h2) // = // (-(x0s0 + x1s1 + x2s2) + s0(a0s0 + a1s1 + a2s2), x0, x1, x2) (1..cols).for_each(|col_i| { let pmat: &MatZnxDft = &tsk.at(col_i - 1, col_j - 1).key.data; // Selects Enc(s[i]s[j]) // Extracts a[i] and multipies with Enc(s[i]s[j]) (0..digits).for_each(|di| { tmp_a.set_size((ci_dft.size() + di) / digits); // Small optimization for digits > 2 // VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then // we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(digits-1) * B}. // As such we can ignore the last digits-2 limbs safely of the sum of vmp products. // It is possible to further ignore the last digits-1 limbs, but this introduce // ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same // noise is kept with respect to the ideal functionality. tmp_dft_i.set_size(tsk.size() - ((digits - di) as isize - 2).max(0) as usize); module.vec_znx_dft_copy(digits, digits - 1 - di, &mut tmp_a, 0, ci_dft, col_i); if di == 0 && col_i == 1 { module.vmp_apply(&mut tmp_dft_i, &tmp_a, pmat, scratch2); } else { module.vmp_apply_add(&mut tmp_dft_i, &tmp_a, pmat, di, scratch2); } }); }); } // Adds -(sum a[i] * s[i]) + m) on the i-th column of tmp_idft_i // // (-(x0s0 + x1s1 + x2s2) + a0s0s0 + a1s0s1 + a2s0s2, x0, x1, x2) // + // (0, -(a0s0 + a1s1 + a2s2) + M[i], 0, 0) // = // (-(x0s0 + x1s1 + x2s2) + s0(a0s0 + a1s1 + a2s2), x0 -(a0s0 + a1s1 + a2s2) + M[i], x1, x2) // = // (-(x0s0 + x1s1 + x2s2), x0 + M[i], x1, x2) module.vec_znx_dft_add_inplace(&mut tmp_dft_i, col_j, ci_dft, 0); let (mut tmp_idft, scratch2) = scratch1.tmp_vec_znx_big(module, 1, tsk.size()); (0..cols).for_each(|i| { module.vec_znx_idft_tmp_a(&mut tmp_idft, 0, &mut tmp_dft_i, i); module.vec_znx_big_normalize(self.basek(), res, i, &tmp_idft, 0, scratch2); }); } pub fn keyswitch, DataKsk: AsRef<[u8]>, DataTsk: AsRef<[u8]>>( &mut self, module: &Module, lhs: &GGSWCiphertext, ksk: &GLWESwitchingKey, tsk: &GLWETensorKey, scratch: &mut Scratch, ) { let rank: usize = self.rank(); let cols: usize = rank + 1; let basek: usize = self.basek(); let (mut tmp_res, scratch1) = scratch.tmp_glwe_ct(module, basek, self.k(), rank); let (mut ci_dft, scratch2) = scratch1.tmp_vec_znx_dft(module, cols, self.size()); // Keyswitch the j-th row of the col 0 (0..lhs.rows()).for_each(|row_i| { // Key-switch column 0, i.e. // col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0, a1, a2) -> (-(a0s0' + a1s1' + a2s2') + M[i], a0, a1, a2) lhs.keyswitch_internal_col0(module, row_i, &mut tmp_res, ksk, scratch2); // Isolates DFT(a[i]) (0..cols).for_each(|col_i| { module.vec_znx_dft(1, 0, &mut ci_dft, col_i, &tmp_res.data, col_i); }); module.mat_znx_dft_set_row(&mut self.data, row_i, 0, &ci_dft); // Generates // // col 1: (-(b0s0' + b1s1' + b2s2') , b0 + M[i], b1 , b2 ) // col 2: (-(c0s0' + c1s1' + c2s2') , c0 , c1 + M[i], c2 ) // col 3: (-(d0s0' + d1s1' + d2s2') , d0 , d1 , d2 + M[i]) (1..cols).for_each(|col_j| { self.expand_row(module, col_j, &mut tmp_res.data, &ci_dft, tsk, scratch2); let (mut tmp_res_dft, _) = scratch2.tmp_fourier_glwe_ct(module, basek, self.k(), rank); tmp_res.dft(module, &mut tmp_res_dft); self.set_row(module, row_i, col_j, &tmp_res_dft); }); }) } pub fn keyswitch_inplace, DataTsk: AsRef<[u8]>>( &mut self, module: &Module, ksk: &GLWESwitchingKey, tsk: &GLWETensorKey, scratch: &mut Scratch, ) { unsafe { let self_ptr: *mut GGSWCiphertext = self as *mut GGSWCiphertext; self.keyswitch(module, &*self_ptr, ksk, tsk, scratch); } } pub fn automorphism, DataAk: AsRef<[u8]>, DataTsk: AsRef<[u8]>>( &mut self, module: &Module, lhs: &GGSWCiphertext, auto_key: &GLWEAutomorphismKey, tensor_key: &GLWETensorKey, scratch: &mut Scratch, ) { #[cfg(debug_assertions)] { assert_eq!( self.rank(), lhs.rank(), "ggsw_out rank: {} != ggsw_in rank: {}", self.rank(), lhs.rank() ); assert_eq!( self.rank(), auto_key.rank(), "ggsw_in rank: {} != auto_key rank: {}", self.rank(), auto_key.rank() ); assert_eq!( self.rank(), tensor_key.rank(), "ggsw_in rank: {} != tensor_key rank: {}", self.rank(), tensor_key.rank() ); assert!( scratch.available() >= GGSWCiphertext::automorphism_scratch_space( module, self.basek(), self.k(), lhs.k(), auto_key.k(), auto_key.digits(), tensor_key.k(), tensor_key.digits(), self.rank(), ) ) }; let rank: usize = self.rank(); let cols: usize = rank + 1; let basek: usize = self.basek(); let (mut tmp_res, scratch1) = scratch.tmp_glwe_ct(module, basek, self.k(), rank); let (mut ci_dft, scratch2) = scratch1.tmp_vec_znx_dft(module, cols, self.size()); // Keyswitch the j-th row of the col 0 (0..lhs.rows()).for_each(|row_i| { // Key-switch column 0, i.e. // col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0, a1, a2) -> (-(a0pi^-1(s0) + a1pi^-1(s1) + a2pi^-1(s2)) + M[i], a0, a1, a2) lhs.keyswitch_internal_col0(module, row_i, &mut tmp_res, &auto_key.key, scratch2); // Isolates DFT(AUTO(a[i])) (0..cols).for_each(|col_i| { // (-(a0pi^-1(s0) + a1pi^-1(s1) + a2pi^-1(s2)) + M[i], a0, a1, a2) -> (-(a0s0 + a1s1 + a2s2) + pi(M[i]), a0, a1, a2) module.vec_znx_automorphism_inplace(auto_key.p(), &mut tmp_res.data, col_i); module.vec_znx_dft(1, 0, &mut ci_dft, col_i, &tmp_res.data, col_i); }); module.mat_znx_dft_set_row(&mut self.data, row_i, 0, &ci_dft); // Generates // // col 1: (-(b0s0 + b1s1 + b2s2) , b0 + pi(M[i]), b1 , b2 ) // col 2: (-(c0s0 + c1s1 + c2s2) , c0 , c1 + pi(M[i]), c2 ) // col 3: (-(d0s0 + d1s1 + d2s2) , d0 , d1 , d2 + pi(M[i])) (1..cols).for_each(|col_j| { self.expand_row( module, col_j, &mut tmp_res.data, &ci_dft, tensor_key, scratch2, ); let (mut tmp_res_dft, _) = scratch2.tmp_fourier_glwe_ct(module, basek, self.k(), rank); tmp_res.dft(module, &mut tmp_res_dft); self.set_row(module, row_i, col_j, &tmp_res_dft); }); }) } pub fn automorphism_inplace, DataTsk: AsRef<[u8]>>( &mut self, module: &Module, auto_key: &GLWEAutomorphismKey, tensor_key: &GLWETensorKey, scratch: &mut Scratch, ) { unsafe { let self_ptr: *mut GGSWCiphertext = self as *mut GGSWCiphertext; self.automorphism(module, &*self_ptr, auto_key, tensor_key, scratch); } } pub fn external_product, DataRhs: AsRef<[u8]>>( &mut self, module: &Module, lhs: &GGSWCiphertext, rhs: &GGSWCiphertext, scratch: &mut Scratch, ) { #[cfg(debug_assertions)] { assert_eq!( self.rank(), lhs.rank(), "ggsw_out rank: {} != ggsw_in rank: {}", self.rank(), lhs.rank() ); assert_eq!( self.rank(), rhs.rank(), "ggsw_in rank: {} != ggsw_apply rank: {}", self.rank(), rhs.rank() ); assert!( scratch.available() >= GGSWCiphertext::external_product_scratch_space( module, self.basek(), self.k(), lhs.k(), rhs.k(), rhs.digits(), rhs.rank() ) ) } let (mut tmp_ct_in, scratch1) = scratch.tmp_fourier_glwe_ct(module, lhs.basek(), lhs.k(), lhs.rank()); let (mut tmp_ct_out, scratch2) = scratch1.tmp_fourier_glwe_ct(module, self.basek(), self.k(), self.rank()); (0..self.rank() + 1).for_each(|col_i| { (0..self.rows()).for_each(|row_j| { lhs.get_row(module, row_j, col_i, &mut tmp_ct_in); tmp_ct_out.external_product(module, &tmp_ct_in, rhs, scratch2); self.set_row(module, row_j, col_i, &tmp_ct_out); }); }); tmp_ct_out.data.zero(); (self.rows().min(lhs.rows())..self.rows()).for_each(|row_i| { (0..self.rank() + 1).for_each(|col_j| { self.set_row(module, row_i, col_j, &tmp_ct_out); }); }); } pub fn external_product_inplace>( &mut self, module: &Module, rhs: &GGSWCiphertext, scratch: &mut Scratch, ) { #[cfg(debug_assertions)] { assert_eq!( self.rank(), rhs.rank(), "ggsw_out rank: {} != ggsw_apply: {}", self.rank(), rhs.rank() ); } let (mut tmp_ct, scratch1) = scratch.tmp_fourier_glwe_ct(module, self.basek(), self.k(), self.rank()); (0..self.rank() + 1).for_each(|col_i| { (0..self.rows()).for_each(|row_j| { self.get_row(module, row_j, col_i, &mut tmp_ct); tmp_ct.external_product_inplace(module, rhs, scratch1); self.set_row(module, row_j, col_i, &tmp_ct); }); }); } } impl> GGSWCiphertext { pub(crate) fn keyswitch_internal_col0 + AsRef<[u8]>, DataKsk: AsRef<[u8]>>( &self, module: &Module, row_i: usize, res: &mut GLWECiphertext, ksk: &GLWESwitchingKey, scratch: &mut Scratch, ) { #[cfg(debug_assertions)] { assert_eq!(self.rank(), ksk.rank()); assert_eq!(res.rank(), ksk.rank()); assert!( scratch.available() >= GGSWCiphertext::keyswitch_internal_col0_scratch_space( module, self.basek(), res.k(), self.k(), ksk.k(), ksk.digits(), ksk.rank() ) ) } let (mut tmp_dft_dft, scratch1) = scratch.tmp_fourier_glwe_ct(module, self.basek(), self.k(), self.rank()); self.get_row(module, row_i, 0, &mut tmp_dft_dft); res.keyswitch_from_fourier(module, &tmp_dft_dft, ksk, scratch1); } } impl> GetRow for GGSWCiphertext { fn get_row + AsRef<[u8]>>( &self, module: &Module, row_i: usize, col_j: usize, res: &mut FourierGLWECiphertext, ) { module.mat_znx_dft_get_row(&mut res.data, &self.data, row_i, col_j); } } impl + AsRef<[u8]>> SetRow for GGSWCiphertext { fn set_row>( &mut self, module: &Module, row_i: usize, col_j: usize, a: &FourierGLWECiphertext, ) { module.mat_znx_dft_set_row(&mut self.data, row_i, col_j, &a.data); } }