use crate::ffi::vec_znx_big::vec_znx_big_t; use crate::ffi::vec_znx_dft::vec_znx_dft_t; use crate::ffi::vmp::{self, vmp_pmat_t}; use crate::{BACKEND, Infos, LAYOUT, Module, VecZnx, VecZnxBig, VecZnxDft, alloc_aligned, assert_alignement}; /// Vector Matrix Product Prepared Matrix: a vector of [VecZnx], /// stored as a 3D matrix in the DFT domain in a single contiguous array. /// Each row of the [VmpPMat] can be seen as a [VecZnxDft]. /// /// The backend array of [VmpPMat] is allocate in C, /// and thus must be manually freed. /// /// [VmpPMat] is used to permform a vector matrix product between a [VecZnx] and a [VmpPMat]. /// See the trait [VmpPMatOps] for additional information. pub struct VmpPMat { /// Raw data, is empty if borrowing scratch space. data: Vec, /// Pointer to data. Can point to scratch space. ptr: *mut u8, /// The number of [VecZnxDft]. rows: usize, /// The number of cols in each [VecZnxDft]. cols: usize, /// The ring degree of each [VecZnxDft]. n: usize, /// The number of stacked [VmpPMat], must be a square. size: usize, /// The memory layout of the stacked [VmpPMat]. layout: LAYOUT, /// The backend fft or ntt. backend: BACKEND, } impl Infos for VmpPMat { /// Returns the ring dimension of the [VmpPMat]. fn n(&self) -> usize { self.n } fn log_n(&self) -> usize { (usize::BITS - (self.n() - 1).leading_zeros()) as _ } fn size(&self) -> usize { self.size } fn layout(&self) -> LAYOUT { self.layout } /// Returns the number of rows (i.e. of [VecZnxDft]) of the [VmpPMat] fn rows(&self) -> usize { self.rows } /// Returns the number of cols of the [VmpPMat]. /// The number of cols refers to the number of cols /// of each [VecZnxDft]. /// This method is equivalent to [Self::cols]. fn cols(&self) -> usize { self.cols } } impl VmpPMat { pub fn as_ptr(&self) -> *const u8 { self.ptr } pub fn as_mut_ptr(&self) -> *mut u8 { self.ptr } pub fn borrowed(&self) -> bool { self.data.len() == 0 } /// Returns a non-mutable reference of `T` of the entire contiguous array of the [VmpPMat]. /// When using [`crate::FFT64`] as backend, `T` should be [f64]. /// When using [`crate::NTT120`] as backend, `T` should be [i64]. /// The length of the returned array is rows * cols * n. pub fn raw(&self) -> &[T] { let ptr: *const T = self.ptr as *const T; let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::(); unsafe { &std::slice::from_raw_parts(ptr, len) } } /// Returns a non-mutable reference of `T` of the entire contiguous array of the [VmpPMat]. /// When using [`crate::FFT64`] as backend, `T` should be [f64]. /// When using [`crate::NTT120`] as backend, `T` should be [i64]. /// The length of the returned array is rows * cols * n. pub fn raw_mut(&self) -> &mut [T] { let ptr: *mut T = self.ptr as *mut T; let len: usize = (self.rows() * self.cols() * self.n() * 8) / std::mem::size_of::(); unsafe { std::slice::from_raw_parts_mut(ptr, len) } } /// Returns a copy of the backend array at index (i, j) of the [VmpPMat]. /// When using [`crate::FFT64`] as backend, `T` should be [f64]. /// When using [`crate::NTT120`] as backend, `T` should be [i64]. /// /// # Arguments /// /// * `row`: row index (i). /// * `col`: col index (j). pub fn at(&self, row: usize, col: usize) -> Vec { let mut res: Vec = alloc_aligned(self.n); if self.n < 8 { res.copy_from_slice( &self.raw::()[(row + col * self.rows()) * self.n()..(row + col * self.rows()) * (self.n() + 1)], ); } else { (0..self.n >> 3).for_each(|blk| { res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.at_block(row, col, blk)[..8]); }); } res } /// When using [`crate::FFT64`] as backend, `T` should be [f64]. /// When using [`crate::NTT120`] as backend, `T` should be [i64]. fn at_block(&self, row: usize, col: usize, blk: usize) -> &[T] { let nrows: usize = self.rows(); let ncols: usize = self.cols(); if col == (ncols - 1) && (ncols & 1 == 1) { &self.raw::()[blk * nrows * ncols * 8 + col * nrows * 8 + row * 8..] } else { &self.raw::()[blk * nrows * ncols * 8 + (col / 2) * (2 * nrows) * 8 + row * 2 * 8 + (col % 2) * 8..] } } fn backend(&self) -> BACKEND { self.backend } } /// This trait implements methods for vector matrix product, /// that is, multiplying a [VecZnx] with a [VmpPMat]. pub trait VmpPMatOps { fn bytes_of_vmp_pmat(&self, size: usize, rows: usize, cols: usize) -> usize; /// Allocates a new [VmpPMat] with the given number of rows and columns. /// /// # Arguments /// /// * `rows`: number of rows (number of [VecZnxDft]). /// * `cols`: number of cols (number of cols of each [VecZnxDft]). fn new_vmp_pmat(&self, size: usize, rows: usize, cols: usize) -> VmpPMat; /// Returns the number of bytes needed as scratch space for [VmpPMatOps::vmp_prepare_contiguous]. /// /// # Arguments /// /// * `rows`: number of rows of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous]. /// * `cols`: number of cols of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous]. fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize) -> usize; /// Prepares a [VmpPMat] from a contiguous array of [i64]. /// The helper struct [Matrix3D] can be used to contruct and populate /// the appropriate contiguous array. /// /// # Arguments /// /// * `b`: [VmpPMat] on which the values are encoded. /// * `a`: the contiguous array of [i64] of the 3D matrix to encode on the [VmpPMat]. /// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]); /// Prepares a [VmpPMat] from a vector of [VecZnx]. /// /// # Arguments /// /// * `b`: [VmpPMat] on which the values are encoded. /// * `a`: the vector of [VecZnx] to encode on the [VmpPMat]. /// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. /// /// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &[&[i64]], buf: &mut [u8]); /// Prepares the ith-row of [VmpPMat] from a [VecZnx]. /// /// # Arguments /// /// * `b`: [VmpPMat] on which the values are encoded. /// * `a`: the vector of [VecZnx] to encode on the [VmpPMat]. /// * `row_i`: the index of the row to prepare. /// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. /// /// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. fn vmp_prepare_row(&self, b: &mut VmpPMat, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]); /// Extracts the ith-row of [VmpPMat] into a [VecZnxBig]. /// /// # Arguments /// /// * `b`: the [VecZnxBig] to on which to extract the row of the [VmpPMat]. /// * `a`: [VmpPMat] on which the values are encoded. /// * `row_i`: the index of the row to extract. fn vmp_extract_row(&self, b: &mut VecZnxBig, a: &VmpPMat, row_i: usize); /// Prepares the ith-row of [VmpPMat] from a [VecZnxDft]. /// /// # Arguments /// /// * `b`: [VmpPMat] on which the values are encoded. /// * `a`: the [VecZnxDft] to encode on the [VmpPMat]. /// * `row_i`: the index of the row to prepare. /// /// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes]. fn vmp_prepare_row_dft(&self, b: &mut VmpPMat, a: &VecZnxDft, row_i: usize); /// Extracts the ith-row of [VmpPMat] into a [VecZnxDft]. /// /// # Arguments /// /// * `b`: the [VecZnxDft] to on which to extract the row of the [VmpPMat]. /// * `a`: [VmpPMat] on which the values are encoded. /// * `row_i`: the index of the row to extract. fn vmp_extract_row_dft(&self, b: &mut VecZnxDft, a: &VmpPMat, row_i: usize); /// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft]. /// /// # Arguments /// /// * `c_cols`: number of cols of the output [VecZnxDft]. /// * `a_cols`: number of cols of the input [VecZnx]. /// * `rows`: number of rows of the input [VmpPMat]. /// * `cols`: number of cols of the input [VmpPMat]. fn vmp_apply_dft_tmp_bytes(&self, c_cols: usize, a_cols: usize, rows: usize, cols: usize) -> usize; /// Applies the vector matrix product [VecZnxDft] x [VmpPMat]. /// /// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft] /// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol]) /// and each vector a [VecZnxDft] (row) of the [VmpPMat]. /// /// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and /// `j` cols, the output is a [VecZnx] of `j` cols. /// /// If there is a mismatch between the dimensions the largest valid ones are used. /// /// ```text /// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p| /// |h i j| /// |k l m| /// ``` /// where each element is a [VecZnxDft]. /// /// # Arguments /// /// * `c`: the output of the vector matrix product, as a [VecZnxDft]. /// * `a`: the left operand [VecZnx] of the vector matrix product. /// * `b`: the right operand [VmpPMat] of the vector matrix product. /// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_tmp_bytes]. fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]); /// Applies the vector matrix product [VecZnxDft] x [VmpPMat] and adds on the receiver. /// /// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft] /// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol]) /// and each vector a [VecZnxDft] (row) of the [VmpPMat]. /// /// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and /// `j` cols, the output is a [VecZnx] of `j` cols. /// /// If there is a mismatch between the dimensions the largest valid ones are used. /// /// ```text /// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p| /// |h i j| /// |k l m| /// ``` /// where each element is a [VecZnxDft]. /// /// # Arguments /// /// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft]. /// * `a`: the left operand [VecZnx] of the vector matrix product. /// * `b`: the right operand [VmpPMat] of the vector matrix product. /// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_tmp_bytes]. fn vmp_apply_dft_add(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]); /// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft_to_dft]. /// /// # Arguments /// /// * `c_cols`: number of cols of the output [VecZnxDft]. /// * `a_cols`: number of cols of the input [VecZnxDft]. /// * `rows`: number of rows of the input [VmpPMat]. /// * `cols`: number of cols of the input [VmpPMat]. fn vmp_apply_dft_to_dft_tmp_bytes(&self, c_cols: usize, a_cols: usize, rows: usize, cols: usize) -> usize; /// Applies the vector matrix product [VecZnxDft] x [VmpPMat]. /// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. /// /// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft] /// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol]) /// and each vector a [VecZnxDft] (row) of the [VmpPMat]. /// /// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and /// `j` cols, the output is a [VecZnx] of `j` cols. /// /// If there is a mismatch between the dimensions the largest valid ones are used. /// /// ```text /// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p| /// |h i j| /// |k l m| /// ``` /// where each element is a [VecZnxDft]. /// /// # Arguments /// /// * `c`: the output of the vector matrix product, as a [VecZnxDft]. /// * `a`: the left operand [VecZnxDft] of the vector matrix product. /// * `b`: the right operand [VmpPMat] of the vector matrix product. /// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]); /// Applies the vector matrix product [VecZnxDft] x [VmpPMat] and adds on top of the receiver instead of overwritting it. /// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. /// /// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft] /// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol]) /// and each vector a [VecZnxDft] (row) of the [VmpPMat]. /// /// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and /// `j` cols, the output is a [VecZnx] of `j` cols. /// /// If there is a mismatch between the dimensions the largest valid ones are used. /// /// ```text /// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p| /// |h i j| /// |k l m| /// ``` /// where each element is a [VecZnxDft]. /// /// # Arguments /// /// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft]. /// * `a`: the left operand [VecZnxDft] of the vector matrix product. /// * `b`: the right operand [VmpPMat] of the vector matrix product. /// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. fn vmp_apply_dft_to_dft_add(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]); /// Applies the vector matrix product [VecZnxDft] x [VmpPMat] in place. /// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. /// /// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft] /// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol]) /// and each vector a [VecZnxDft] (row) of the [VmpPMat]. /// /// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and /// `j` cols, the output is a [VecZnx] of `j` cols. /// /// If there is a mismatch between the dimensions the largest valid ones are used. /// /// ```text /// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p| /// |h i j| /// |k l m| /// ``` /// where each element is a [VecZnxDft]. /// /// # Arguments /// /// * `b`: the input and output of the vector matrix product, as a [VecZnxDft]. /// * `a`: the right operand [VmpPMat] of the vector matrix product. /// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes]. fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]); } impl VmpPMatOps for Module { fn bytes_of_vmp_pmat(&self, size: usize, rows: usize, cols: usize) -> usize { unsafe { vmp::bytes_of_vmp_pmat(self.ptr, rows as u64, cols as u64) as usize * size } } fn new_vmp_pmat(&self, size: usize, rows: usize, cols: usize) -> VmpPMat { let mut data: Vec = alloc_aligned::(self.bytes_of_vmp_pmat(size, rows, cols)); let ptr: *mut u8 = data.as_mut_ptr(); VmpPMat { data: data, ptr: ptr, n: self.n(), size: size, layout: LAYOUT::COL, cols: cols, rows: rows, backend: self.backend(), } } fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize) -> usize { unsafe { vmp::vmp_prepare_tmp_bytes(self.ptr, rows as u64, cols as u64) as usize } } fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], tmp_bytes: &mut [u8]) { debug_assert_eq!(a.len(), b.n * b.rows * b.cols); debug_assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_prepare_contiguous( self.ptr, b.as_mut_ptr() as *mut vmp_pmat_t, a.as_ptr(), b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ); } } fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &[&[i64]], tmp_bytes: &mut [u8]) { let ptrs: Vec<*const i64> = a.iter().map(|v| v.as_ptr()).collect(); #[cfg(debug_assertions)] { debug_assert_eq!(a.len(), b.rows); a.iter().for_each(|ai| { debug_assert_eq!(ai.len(), b.n * b.cols); }); debug_assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols())); assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_prepare_dblptr( self.ptr, b.as_mut_ptr() as *mut vmp_pmat_t, ptrs.as_ptr(), b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ); } } fn vmp_prepare_row(&self, b: &mut VmpPMat, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]) { #[cfg(debug_assertions)] { assert_eq!(a.len(), b.cols() * self.n()); assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols())); assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_prepare_row( self.ptr, b.as_mut_ptr() as *mut vmp_pmat_t, a.as_ptr(), row_i as u64, b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ); } } fn vmp_extract_row(&self, b: &mut VecZnxBig, a: &VmpPMat, row_i: usize) { #[cfg(debug_assertions)] { assert_eq!(a.n(), b.n()); assert_eq!(a.cols(), b.cols()); } unsafe { vmp::vmp_extract_row( self.ptr, b.ptr as *mut vec_znx_big_t, a.as_ptr() as *const vmp_pmat_t, row_i as u64, a.rows() as u64, a.cols() as u64, ); } } fn vmp_prepare_row_dft(&self, b: &mut VmpPMat, a: &VecZnxDft, row_i: usize) { #[cfg(debug_assertions)] { assert_eq!(a.n(), b.n()); assert_eq!(a.cols(), b.cols()); } unsafe { vmp::vmp_prepare_row_dft( self.ptr, b.as_mut_ptr() as *mut vmp_pmat_t, a.ptr as *const vec_znx_dft_t, row_i as u64, b.rows() as u64, b.cols() as u64, ); } } fn vmp_extract_row_dft(&self, b: &mut VecZnxDft, a: &VmpPMat, row_i: usize) { #[cfg(debug_assertions)] { assert_eq!(a.n(), b.n()); assert_eq!(a.cols(), b.cols()); } unsafe { vmp::vmp_extract_row_dft( self.ptr, b.ptr as *mut vec_znx_dft_t, a.as_ptr() as *const vmp_pmat_t, row_i as u64, a.rows() as u64, a.cols() as u64, ); } } fn vmp_apply_dft_tmp_bytes(&self, res_cols: usize, a_cols: usize, gct_rows: usize, gct_cols: usize) -> usize { unsafe { vmp::vmp_apply_dft_tmp_bytes( self.ptr, res_cols as u64, a_cols as u64, gct_rows as u64, gct_cols as u64, ) as usize } } fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, tmp_bytes: &mut [u8]) { debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.cols(), a.cols(), b.rows(), b.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_apply_dft( self.ptr, c.ptr as *mut vec_znx_dft_t, c.cols() as u64, a.as_ptr(), a.cols() as u64, a.n() as u64, b.as_ptr() as *const vmp_pmat_t, b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ) } } fn vmp_apply_dft_add(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, tmp_bytes: &mut [u8]) { debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.cols(), a.cols(), b.rows(), b.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_apply_dft_add( self.ptr, c.ptr as *mut vec_znx_dft_t, c.cols() as u64, a.as_ptr(), a.cols() as u64, a.n() as u64, b.as_ptr() as *const vmp_pmat_t, b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ) } } fn vmp_apply_dft_to_dft_tmp_bytes(&self, res_cols: usize, a_cols: usize, gct_rows: usize, gct_cols: usize) -> usize { unsafe { vmp::vmp_apply_dft_to_dft_tmp_bytes( self.ptr, res_cols as u64, a_cols as u64, gct_rows as u64, gct_cols as u64, ) as usize } } fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, tmp_bytes: &mut [u8]) { debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.cols(), a.cols(), b.rows(), b.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_apply_dft_to_dft( self.ptr, c.ptr as *mut vec_znx_dft_t, c.cols() as u64, a.ptr as *const vec_znx_dft_t, a.cols() as u64, b.as_ptr() as *const vmp_pmat_t, b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ) } } fn vmp_apply_dft_to_dft_add(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, tmp_bytes: &mut [u8]) { debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.cols(), a.cols(), b.rows(), b.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_apply_dft_to_dft_add( self.ptr, c.ptr as *mut vec_znx_dft_t, c.cols() as u64, a.ptr as *const vec_znx_dft_t, a.cols() as u64, b.as_ptr() as *const vmp_pmat_t, b.rows() as u64, b.cols() as u64, tmp_bytes.as_mut_ptr(), ) } } fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, tmp_bytes: &mut [u8]) { debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(b.cols(), b.cols(), a.rows(), a.cols())); #[cfg(debug_assertions)] { assert_alignement(tmp_bytes.as_ptr()); } unsafe { vmp::vmp_apply_dft_to_dft( self.ptr, b.ptr as *mut vec_znx_dft_t, b.cols() as u64, b.ptr as *mut vec_znx_dft_t, b.cols() as u64, a.as_ptr() as *const vmp_pmat_t, a.rows() as u64, a.cols() as u64, tmp_bytes.as_mut_ptr(), ) } } } #[cfg(test)] mod tests { use crate::{ Module, Sampling, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, VecZnxOps, VmpPMat, VmpPMatOps, alloc_aligned, }; use sampling::source::Source; #[test] fn vmp_prepare_row_dft() { let module: Module = Module::new(32, crate::BACKEND::FFT64); let vpmat_rows: usize = 4; let vpmat_cols: usize = 5; let log_base2k: usize = 8; let mut a: VecZnx = module.new_vec_znx(1, vpmat_cols); let mut a_dft: VecZnxDft = module.new_vec_znx_dft(1, vpmat_cols); let mut a_big: VecZnxBig = module.new_vec_znx_big(1, vpmat_cols); let mut b_big: VecZnxBig = module.new_vec_znx_big(1, vpmat_cols); let mut b_dft: VecZnxDft = module.new_vec_znx_dft(1, vpmat_cols); let mut vmpmat_0: VmpPMat = module.new_vmp_pmat(1, vpmat_rows, vpmat_cols); let mut vmpmat_1: VmpPMat = module.new_vmp_pmat(1, vpmat_rows, vpmat_cols); let mut tmp_bytes: Vec = alloc_aligned(module.vmp_prepare_tmp_bytes(vpmat_rows, vpmat_cols)); for row_i in 0..vpmat_rows { let mut source: Source = Source::new([0u8; 32]); module.fill_uniform(log_base2k, &mut a, vpmat_cols, &mut source); module.vec_znx_dft(&mut a_dft, &a); module.vmp_prepare_row(&mut vmpmat_0, &a.raw(), row_i, &mut tmp_bytes); // Checks that prepare(vmp_pmat, a) = prepare_dft(vmp_pmat, a_dft) module.vmp_prepare_row_dft(&mut vmpmat_1, &a_dft, row_i); assert_eq!(vmpmat_0.raw::(), vmpmat_1.raw::()); // Checks that a_dft = extract_dft(prepare(vmp_pmat, a), b_dft) module.vmp_extract_row_dft(&mut b_dft, &vmpmat_0, row_i); assert_eq!(a_dft.raw::(&module), b_dft.raw::(&module)); // Checks that a_big = extract(prepare_dft(vmp_pmat, a_dft), b_big) module.vmp_extract_row(&mut b_big, &vmpmat_0, row_i); module.vec_znx_idft(&mut a_big, &a_dft, &mut tmp_bytes); assert_eq!(a_big.raw::(&module), b_big.raw::(&module)); } module.free(); } }