use backend::hal::{ api::{FillUniform, Reset, ScratchAvailable, TakeVecZnx, TakeVecZnxDft, VecZnxAddScalarInplace, ZnxView, ZnxViewMut}, layouts::{Backend, Data, DataMut, DataRef, Module, ReaderFrom, ScalarZnx, ScalarZnxToRef, Scratch, WriterTo}, }; use sampling::source::Source; use crate::{ Distribution, Infos, layouts::{LWESecret, compressed::GGSWCiphertextCompressed, prepared::GLWESecretExec}, }; use std::fmt; use crate::trait_families::GGSWEncryptSkFamily; #[derive(Clone)] pub struct BlindRotationKeyCGGICompressed { pub(crate) keys: Vec>, pub(crate) dist: Distribution, } impl fmt::Debug for BlindRotationKeyCGGICompressed { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self) } } impl PartialEq for BlindRotationKeyCGGICompressed { fn eq(&self, other: &Self) -> bool { if self.keys.len() != other.keys.len() { return false; } for (a, b) in self.keys.iter().zip(other.keys.iter()) { if a != b { return false; } } self.dist == other.dist } } impl Eq for BlindRotationKeyCGGICompressed {} impl fmt::Display for BlindRotationKeyCGGICompressed { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for (i, key) in self.keys.iter().enumerate() { write!(f, "key[{}]: {}", i, key)?; } writeln!(f, "{:?}", self.dist) } } impl Reset for BlindRotationKeyCGGICompressed { fn reset(&mut self) { self.keys.iter_mut().for_each(|key| key.reset()); self.dist = Distribution::NONE; } } impl FillUniform for BlindRotationKeyCGGICompressed { fn fill_uniform(&mut self, source: &mut sampling::source::Source) { self.keys .iter_mut() .for_each(|key| key.fill_uniform(source)); } } use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt}; impl ReaderFrom for BlindRotationKeyCGGICompressed { fn read_from(&mut self, reader: &mut R) -> std::io::Result<()> { match Distribution::read_from(reader) { Ok(dist) => self.dist = dist, Err(e) => return Err(e), } let len: usize = reader.read_u64::()? as usize; if self.keys.len() != len { return Err(std::io::Error::new( std::io::ErrorKind::InvalidData, format!("self.keys.len()={} != read len={}", self.keys.len(), len), )); } for key in &mut self.keys { key.read_from(reader)?; } Ok(()) } } impl WriterTo for BlindRotationKeyCGGICompressed { fn write_to(&self, writer: &mut W) -> std::io::Result<()> { match self.dist.write_to(writer) { Ok(()) => {} Err(e) => return Err(e), } writer.write_u64::(self.keys.len() as u64)?; for key in &self.keys { key.write_to(writer)?; } Ok(()) } } impl BlindRotationKeyCGGICompressed> { pub fn alloc(n_gglwe: usize, n_lwe: usize, basek: usize, k: usize, rows: usize, rank: usize) -> Self { let mut data: Vec>> = Vec::with_capacity(n_lwe); (0..n_lwe).for_each(|_| { data.push(GGSWCiphertextCompressed::alloc( n_gglwe, basek, k, rows, 1, rank, )) }); Self { keys: data, dist: Distribution::NONE, } } pub fn generate_from_sk_scratch_space(module: &Module, n: usize, basek: usize, k: usize, rank: usize) -> usize where Module: GGSWEncryptSkFamily, { GGSWCiphertextCompressed::encrypt_sk_scratch_space(module, n, basek, k, rank) } } impl BlindRotationKeyCGGICompressed { #[allow(dead_code)] pub(crate) fn n(&self) -> usize { self.keys[0].n() } #[allow(dead_code)] pub(crate) fn rows(&self) -> usize { self.keys[0].rows() } #[allow(dead_code)] pub(crate) fn k(&self) -> usize { self.keys[0].k() } #[allow(dead_code)] pub(crate) fn size(&self) -> usize { self.keys[0].size() } #[allow(dead_code)] pub(crate) fn rank(&self) -> usize { self.keys[0].rank() } #[allow(dead_code)] pub(crate) fn basek(&self) -> usize { self.keys[0].basek() } #[allow(dead_code)] pub(crate) fn block_size(&self) -> usize { match self.dist { Distribution::BinaryBlock(value) => value, _ => 1, } } } impl BlindRotationKeyCGGICompressed { pub fn generate_from_sk( &mut self, module: &Module, sk_glwe: &GLWESecretExec, sk_lwe: &LWESecret, seed_xa: [u8; 32], source_xe: &mut Source, sigma: f64, scratch: &mut Scratch, ) where DataSkGLWE: DataRef, DataSkLWE: DataRef, Module: GGSWEncryptSkFamily + VecZnxAddScalarInplace, Scratch: TakeVecZnxDft + ScratchAvailable + TakeVecZnx, { #[cfg(debug_assertions)] { assert_eq!(self.keys.len(), sk_lwe.n()); assert!(sk_glwe.n() <= module.n()); assert_eq!(sk_glwe.rank(), self.keys[0].rank()); match sk_lwe.dist { Distribution::BinaryBlock(_) | Distribution::BinaryFixed(_) | Distribution::BinaryProb(_) | Distribution::ZERO => {} _ => panic!( "invalid GLWESecret distribution: must be BinaryBlock, BinaryFixed or BinaryProb (or ZERO for debugging)" ), } } self.dist = sk_lwe.dist; let mut pt: ScalarZnx> = ScalarZnx::alloc(sk_glwe.n(), 1); let sk_ref: ScalarZnx<&[u8]> = sk_lwe.data.to_ref(); let mut source_xa: Source = Source::new(seed_xa); self.keys.iter_mut().enumerate().for_each(|(i, ggsw)| { pt.at_mut(0, 0)[0] = sk_ref.at(0, 0)[i]; ggsw.encrypt_sk( module, &pt, sk_glwe, source_xa.new_seed(), source_xe, sigma, scratch, ); }); } }