use math::poly::PolyRNS; use math::ring::impl_u64::ring_rns::new_rings; use math::ring::{Ring, RingRNS}; use num_bigint::BigInt; use num_bigint::Sign; use sampling::source::Source; #[test] fn rescaling_rns_u64() { let n = 1 << 10; let moduli: Vec = vec![0x1fffffffffc80001u64, 0x1fffffffffe00001u64]; let rings: Vec> = new_rings(n, moduli); let ring_rns: RingRNS<'_, u64> = RingRNS::new(&rings); test_div_floor_by_last_modulus::(&ring_rns); test_div_floor_by_last_modulus::(&ring_rns); } fn test_div_floor_by_last_modulus(ring_rns: &RingRNS) { let seed: [u8; 32] = [0; 32]; let mut source: Source = Source::new(seed); let mut a: PolyRNS = ring_rns.new_polyrns(); let mut b: PolyRNS = ring_rns.new_polyrns(); let mut c: PolyRNS = ring_rns.at_level(ring_rns.level() - 1).new_polyrns(); // Allocates a random PolyRNS ring_rns.fill_uniform(&mut source, &mut a); // Maps PolyRNS to [BigInt] let mut coeffs_a: Vec = (0..a.n()).map(|i| BigInt::from(i)).collect(); ring_rns .at_level(a.level()) .to_bigint_inplace(&a, 1, &mut coeffs_a); // Performs c = intt(ntt(a) / q_level) if NTT { ring_rns.ntt_inplace::(&mut a); } ring_rns.div_floor_by_last_modulus::(&a, &mut b, &mut c); if NTT { ring_rns.at_level(c.level()).intt_inplace::(&mut c); } // Exports c to coeffs_c let mut coeffs_c = vec![BigInt::from(0); c.n()]; ring_rns .at_level(c.level()) .to_bigint_inplace(&c, 1, &mut coeffs_c); // Performs floor division on a let scalar_big = BigInt::from(ring_rns.0[ring_rns.level()].modulus.q); coeffs_a.iter_mut().for_each(|a| { // Emulates floor division in [0, q-1] and maps to [-(q-1)/2, (q-1)/2-1] *a /= &scalar_big; if a.sign() == Sign::Minus { *a -= 1; } }); assert!(coeffs_a == coeffs_c); }