use backend::{ Decoding, Encoding, FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut, ZnxZero, }; use itertools::izip; use sampling::source::Source; use crate::{ automorphism::AutomorphismKey, elem::Infos, ggsw_ciphertext::GGSWCiphertext, glwe_ciphertext::GLWECiphertext, glwe_ciphertext_fourier::GLWECiphertextFourier, glwe_plaintext::GLWEPlaintext, keys::{GLWEPublicKey, SecretKey, SecretKeyFourier}, keyswitch_key::GLWESwitchingKey, test_fft64::{gglwe::log2_std_noise_gglwe_product, ggsw::noise_ggsw_product}, }; #[test] fn encrypt_sk() { (1..4).for_each(|rank| { println!("test encrypt_sk rank: {}", rank); test_encrypt_sk(11, 8, 54, 30, 3.2, rank); }); } #[test] fn encrypt_zero_sk() { (1..4).for_each(|rank| { println!("test encrypt_zero_sk rank: {}", rank); test_encrypt_zero_sk(11, 8, 64, 3.2, rank); }); } #[test] fn encrypt_pk() { (1..4).for_each(|rank| { println!("test encrypt_pk rank: {}", rank); test_encrypt_pk(11, 8, 64, 64, 3.2, rank) }); } #[test] fn keyswitch() { (1..4).for_each(|rank_in| { (1..4).for_each(|rank_out| { println!("test keyswitch rank_in: {} rank_out: {}", rank_in, rank_out); test_keyswitch(12, 12, 60, 45, 60, rank_in, rank_out, 3.2); }); }); } #[test] fn keyswitch_inplace() { (1..4).for_each(|rank| { println!("test keyswitch_inplace rank: {}", rank); test_keyswitch_inplace(12, 12, 60, 45, rank, 3.2); }); } #[test] fn external_product() { (1..4).for_each(|rank| { println!("test external_product rank: {}", rank); test_external_product(12, 12, 60, 45, 60, rank, 3.2); }); } #[test] fn external_product_inplace() { (1..4).for_each(|rank| { println!("test external_product rank: {}", rank); test_external_product_inplace(12, 15, 60, 60, rank, 3.2); }); } #[test] fn automorphism_inplace() { (1..4).for_each(|rank| { println!("test automorphism_inplace rank: {}", rank); test_automorphism_inplace(12, 12, -5, 60, 60, rank, 3.2); }); } #[test] fn automorphism() { (1..4).for_each(|rank| { println!("test automorphism rank: {}", rank); test_automorphism(12, 12, -5, 60, 45, 60, rank, 3.2); }); } fn test_encrypt_sk(log_n: usize, basek: usize, k_ct: usize, k_pt: usize, sigma: f64, rank: usize) { let module: Module = Module::::new(1 << log_n); let mut ct: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct, rank); let mut pt: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_pt); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()), ); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); let mut data_want: Vec = vec![0i64; module.n()]; data_want .iter_mut() .for_each(|x| *x = source_xa.next_i64() & 0xFF); pt.data.encode_vec_i64(0, basek, k_pt, &data_want, 10); ct.encrypt_sk( &module, &pt, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); pt.data.zero(); ct.decrypt(&module, &mut pt, &sk_dft, scratch.borrow()); let mut data_have: Vec = vec![0i64; module.n()]; pt.data .decode_vec_i64(0, basek, pt.size() * basek, &mut data_have); // TODO: properly assert the decryption noise through std(dec(ct) - pt) let scale: f64 = (1 << (pt.size() * basek - k_pt)) as f64; izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| { let b_scaled = (*b as f64) / scale; assert!( (*a as f64 - b_scaled).abs() < 0.1, "{} {}", *a as f64, b_scaled ) }); } fn test_encrypt_zero_sk(log_n: usize, basek: usize, k_ct: usize, sigma: f64, rank: usize) { let module: Module = Module::::new(1 << log_n); let mut pt: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([1u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); let mut ct_dft: GLWECiphertextFourier, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct, rank); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertextFourier::decrypt_scratch_space(&module, ct_dft.size()) | GLWECiphertextFourier::encrypt_sk_scratch_space(&module, rank, ct_dft.size()), ); ct_dft.encrypt_zero_sk( &module, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow()); assert!((sigma - pt.data.std(0, basek) * (k_ct as f64).exp2()) <= 0.2); } fn test_encrypt_pk(log_n: usize, basek: usize, k_ct: usize, k_pk: usize, sigma: f64, rank: usize) { let module: Module = Module::::new(1 << log_n); let mut ct: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut source_xu: Source = Source::new([0u8; 32]); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); let mut pk: GLWEPublicKey, FFT64> = GLWEPublicKey::alloc(&module, basek, k_pk, rank); pk.generate_from_sk(&module, &sk_dft, &mut source_xa, &mut source_xe, sigma); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()) | GLWECiphertext::encrypt_pk_scratch_space(&module, pk.size()), ); let mut data_want: Vec = vec![0i64; module.n()]; data_want .iter_mut() .for_each(|x| *x = source_xa.next_i64() & 0); pt_want.data.encode_vec_i64(0, basek, k_ct, &data_want, 10); ct.encrypt_pk( &module, &pt_want, &pk, &mut source_xu, &mut source_xe, sigma, scratch.borrow(), ); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_want.data, 0, &pt_have.data, 0); let noise_have: f64 = pt_want.data.std(0, basek).log2(); let noise_want: f64 = ((((rank as f64) + 1.0) * module.n() as f64 * 0.5 * sigma * sigma).sqrt()).log2() - (k_ct as f64); assert!( (noise_have - noise_want).abs() < 0.2, "{} {}", noise_have, noise_want ); } fn test_keyswitch( log_n: usize, basek: usize, k_keyswitch: usize, k_ct_in: usize, k_ct_out: usize, rank_in: usize, rank_out: usize, sigma: f64, ) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct_in + basek - 1) / basek; let mut ksk: GLWESwitchingKey, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_keyswitch, rows, rank_in, rank_out); let mut ct_in: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank_in); let mut ct_out: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank_out); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank_in, ksk.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_out.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct_in.size()) | GLWECiphertext::keyswitch_scratch_space( &module, ct_out.size(), rank_out, ct_in.size(), rank_in, ksk.size(), ), ); let mut sk_in: SecretKey> = SecretKey::alloc(&module, rank_in); sk_in.fill_ternary_prob(0.5, &mut source_xs); let mut sk_in_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank_in); sk_in_dft.dft(&module, &sk_in); let mut sk_out: SecretKey> = SecretKey::alloc(&module, rank_out); sk_out.fill_ternary_prob(0.5, &mut source_xs); let mut sk_out_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank_out); sk_out_dft.dft(&module, &sk_out); ksk.generate_from_sk( &module, &sk_in, &sk_out_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_in.encrypt_sk( &module, &pt_want, &sk_in_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_out.keyswitch(&module, &ct_in, &ksk, scratch.borrow()); ct_out.decrypt(&module, &mut pt_have, &sk_out_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); let noise_have: f64 = pt_have.data.std(0, basek).log2(); let noise_want: f64 = log2_std_noise_gglwe_product( module.n() as f64, basek, 0.5, 0.5, 0f64, sigma * sigma, 0f64, rank_in as f64, k_ct_in, k_keyswitch, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ksk: usize, k_ct: usize, rank: usize, sigma: f64) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct + basek - 1) / basek; let mut ct_grlwe: GLWESwitchingKey, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, rank, rank); let mut ct_rlwe: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::keyswitch_inplace_scratch_space(&module, ct_rlwe.size(), rank, ct_grlwe.size()), ); let mut sk0: SecretKey> = SecretKey::alloc(&module, rank); sk0.fill_ternary_prob(0.5, &mut source_xs); let mut sk0_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk0_dft.dft(&module, &sk0); let mut sk1: SecretKey> = SecretKey::alloc(&module, rank); sk1.fill_ternary_prob(0.5, &mut source_xs); let mut sk1_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk1_dft.dft(&module, &sk1); ct_grlwe.generate_from_sk( &module, &sk0, &sk1_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe.encrypt_sk( &module, &pt_want, &sk0_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow()); ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); let noise_have: f64 = pt_have.data.std(0, basek).log2(); let noise_want: f64 = log2_std_noise_gglwe_product( module.n() as f64, basek, 0.5, 0.5, 0f64, sigma * sigma, 0f64, rank as f64, k_ct, k_ksk, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } fn test_automorphism( log_n: usize, basek: usize, p: i64, k_autokey: usize, k_ct_in: usize, k_ct_out: usize, rank: usize, sigma: f64, ) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct_in + basek - 1) / basek; let mut autokey: AutomorphismKey, FFT64> = AutomorphismKey::alloc(&module, basek, k_autokey, rows, rank); let mut ct_in: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank); let mut ct_out: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, autokey.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_out.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct_in.size()) | GLWECiphertext::automorphism_scratch_space(&module, ct_out.size(), rank, ct_in.size(), autokey.size()), ); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); autokey.generate_from_sk( &module, p, &sk, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_in.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_out.automorphism(&module, &ct_in, &autokey, scratch.borrow()); ct_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow()); let noise_have: f64 = pt_have.data.std(0, basek).log2(); println!("{}", noise_have); let noise_want: f64 = log2_std_noise_gglwe_product( module.n() as f64, basek, 0.5, 0.5, 0f64, sigma * sigma, 0f64, rank as f64, k_ct_in, k_autokey, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } fn test_automorphism_inplace(log_n: usize, basek: usize, p: i64, k_autokey: usize, k_ct: usize, rank: usize, sigma: f64) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct + basek - 1) / basek; let mut autokey: AutomorphismKey, FFT64> = AutomorphismKey::alloc(&module, basek, k_autokey, rows, rank); let mut ct: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, autokey.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size()) | GLWECiphertext::automorphism_inplace_scratch_space(&module, ct.size(), rank, autokey.size()), ); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); autokey.generate_from_sk( &module, p, &sk, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct.automorphism_inplace(&module, &autokey, scratch.borrow()); ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow()); let noise_have: f64 = pt_have.data.std(0, basek).log2(); let noise_want: f64 = log2_std_noise_gglwe_product( module.n() as f64, basek, 0.5, 0.5, 0f64, sigma * sigma, 0f64, rank as f64, k_ct, k_autokey, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } fn test_external_product(log_n: usize, basek: usize, k_ggsw: usize, k_ct_in: usize, k_ct_out: usize, rank: usize, sigma: f64) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct_in + basek - 1) / basek; let mut ct_rgsw: GGSWCiphertext, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank); let mut ct_rlwe_in: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank); let mut ct_rlwe_out: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank); let mut pt_rgsw: ScalarZnx> = module.new_scalar_znx(1); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); pt_want.data.at_mut(0, 0)[1] = 1; let k: usize = 1; pt_rgsw.raw_mut()[k] = 1; // X^{k} let mut scratch: ScratchOwned = ScratchOwned::new( GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe_in.size()) | GLWECiphertext::external_product_scratch_space( &module, ct_rlwe_out.size(), ct_rlwe_in.size(), ct_rgsw.size(), rank, ), ); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); ct_rgsw.encrypt_sk( &module, &pt_rgsw, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe_in.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe_out.external_product(&module, &ct_rlwe_in, &ct_rgsw, scratch.borrow()); ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); let noise_have: f64 = pt_have.data.std(0, basek).log2(); let var_gct_err_lhs: f64 = sigma * sigma; let var_gct_err_rhs: f64 = 0f64; let var_msg: f64 = 1f64 / module.n() as f64; // X^{k} let var_a0_err: f64 = sigma * sigma; let var_a1_err: f64 = 1f64 / 12f64; let noise_want: f64 = noise_ggsw_product( module.n() as f64, basek, 0.5, var_msg, var_a0_err, var_a1_err, var_gct_err_lhs, var_gct_err_rhs, rank as f64, k_ct_in, k_ggsw, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } fn test_external_product_inplace(log_n: usize, basek: usize, k_ggsw: usize, k_ct: usize, rank: usize, sigma: f64) { let module: Module = Module::::new(1 << log_n); let rows: usize = (k_ct + basek - 1) / basek; let mut ct_rgsw: GGSWCiphertext, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank); let mut ct_rlwe: GLWECiphertext> = GLWECiphertext::alloc(&module, basek, k_ct, rank); let mut pt_rgsw: ScalarZnx> = module.new_scalar_znx(1); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::alloc(&module, basek, k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(basek, 0, pt_want.size(), &mut source_xa); pt_want.data.at_mut(0, 0)[1] = 1; let k: usize = 1; pt_rgsw.raw_mut()[k] = 1; // X^{k} let mut scratch: ScratchOwned = ScratchOwned::new( GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::external_product_inplace_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size(), rank), ); let mut sk: SecretKey> = SecretKey::alloc(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::alloc(&module, rank); sk_dft.dft(&module, &sk); ct_rgsw.encrypt_sk( &module, &pt_rgsw, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, scratch.borrow(), ); ct_rlwe.external_product_inplace(&module, &ct_rgsw, scratch.borrow()); ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0); module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0); let noise_have: f64 = pt_have.data.std(0, basek).log2(); let var_gct_err_lhs: f64 = sigma * sigma; let var_gct_err_rhs: f64 = 0f64; let var_msg: f64 = 1f64 / module.n() as f64; // X^{k} let var_a0_err: f64 = sigma * sigma; let var_a1_err: f64 = 1f64 / 12f64; let noise_want: f64 = noise_ggsw_product( module.n() as f64, basek, 0.5, var_msg, var_a0_err, var_a1_err, var_gct_err_lhs, var_gct_err_rhs, rank as f64, k_ct, k_ggsw, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); }