use crate::ffi::znx::znx_zero_i64_ref; use crate::{Infos, VecZnx}; use itertools::izip; use std::cmp::min; pub trait Encoding { /// encode a vector of i64 on the receiver. /// /// # Arguments /// /// * `log_base2k`: base two logarithm decomposition of the receiver. /// * `log_k`: base two logarithm of the scaling of the data. /// * `data`: data to encode on the receiver. /// * `log_max`: base two logarithm of the infinity norm of the input data. fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize); /// decode a vector of i64 from the receiver. /// /// # Arguments /// /// * `log_base2k`: base two logarithm decomposition of the receiver. /// * `log_k`: base two logarithm of the scaling of the data. /// * `data`: data to decode from the receiver. fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]); /// encodes a single i64 on the receiver at the given index. /// /// # Arguments /// /// * `log_base2k`: base two logarithm decomposition of the receiver. /// * `log_k`: base two logarithm of the scaling of the data. /// * `i`: index of the coefficient on which to encode the data. /// * `data`: data to encode on the receiver. /// * `log_max`: base two logarithm of the infinity norm of the input data. fn encode_i64_coeff( &mut self, log_base2k: usize, log_k: usize, i: usize, data: i64, log_max: usize, ); /// decode a single of i64 from the receiver at the given index. /// /// # Arguments /// /// * `log_base2k`: base two logarithm decomposition of the receiver. /// * `log_k`: base two logarithm of the scaling of the data. /// * `i`: index of the coefficient to decode. /// * `data`: data to decode from the receiver. fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64; } impl Encoding for VecZnx { fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) { let limbs: usize = (log_k + log_base2k - 1) / log_base2k; assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs()); let size: usize = min(data.len(), self.n()); let log_k_rem: usize = log_base2k - (log_k % log_base2k); // If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy // values on the last limb. // Else we decompose values base2k. if log_max + log_k_rem < 63 || log_k_rem == log_base2k { (0..limbs - 1).for_each(|i| unsafe { znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr()); }); self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]); } else { let mask: i64 = (1 << log_base2k) - 1; let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k); (0..steps).for_each(|i| unsafe { znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr()); }); (limbs - steps..limbs) .rev() .enumerate() .for_each(|(i, i_rev)| { let shift: usize = i * log_base2k; izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter()) .for_each(|(y, x)| *y = (x >> shift) & mask); }) } // Case where self.prec % self.k != 0. if log_k_rem != log_base2k { let limbs = self.limbs(); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k); (limbs - steps..limbs).rev().for_each(|i| { self.at_mut(i)[..size] .iter_mut() .for_each(|x| *x <<= log_k_rem); }) } } fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) { let limbs: usize = (log_k + log_base2k - 1) / log_base2k; assert!( data.len() >= self.n, "invalid data: data.len()={} < self.n()={}", data.len(), self.n ); data.copy_from_slice(self.at(0)); let rem: usize = log_base2k - (log_k % log_base2k); (1..limbs).for_each(|i| { if i == limbs - 1 && rem != log_base2k { let k_rem: usize = log_base2k - rem; izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| { *y = (*y << k_rem) + (x >> rem); }); } else { izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| { *y = (*y << log_base2k) + x; }); } }) } fn encode_i64_coeff( &mut self, log_base2k: usize, log_k: usize, i: usize, value: i64, log_max: usize, ) { assert!(i < self.n()); let limbs: usize = (log_k + log_base2k - 1) / log_base2k; assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs()); let log_k_rem: usize = log_base2k - (log_k % log_base2k); let limbs = self.limbs(); // If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy // values on the last limb. // Else we decompose values base2k. if log_max + log_k_rem < 63 || log_k_rem == log_base2k { (0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0); self.at_mut(self.limbs() - 1)[i] = value; } else { let mask: i64 = (1 << log_base2k) - 1; let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k); (0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0); (limbs - steps..limbs) .rev() .enumerate() .for_each(|(j, j_rev)| { self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask; }) } // Case where self.prec % self.k != 0. if log_k_rem != log_base2k { let limbs = self.limbs(); let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k); (limbs - steps..limbs).rev().for_each(|j| { self.at_mut(j)[i] <<= log_k_rem; }) } } fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 { let limbs: usize = (log_k + log_base2k - 1) / log_base2k; assert!(i < self.n()); let mut res: i64 = self.data[i]; let rem: usize = log_base2k - (log_k % log_base2k); (1..limbs).for_each(|i| { let x = self.data[i * self.n]; if i == limbs - 1 && rem != log_base2k { let k_rem: usize = log_base2k - rem; res = (res << k_rem) + (x >> rem); } else { res = (res << log_base2k) + x; } }); res } } #[cfg(test)] mod tests { use crate::{Encoding, VecZnx}; use itertools::izip; use sampling::source::Source; #[test] fn test_set_get_i64_lo_norm() { let n: usize = 8; let log_base2k: usize = 17; let limbs: usize = 5; let log_k: usize = limbs * log_base2k - 5; let mut a: VecZnx = VecZnx::new(n, limbs); let mut have: Vec = vec![i64::default(); n]; have.iter_mut() .enumerate() .for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2); a.encode_i64_vec(log_base2k, log_k, &have, 10); let mut want = vec![i64::default(); n]; a.decode_i64_vec(log_base2k, log_k, &mut want); izip!(want, have).for_each(|(a, b)| assert_eq!(a, b)); } #[test] fn test_set_get_i64_hi_norm() { let n: usize = 8; let log_base2k: usize = 17; let limbs: usize = 5; let log_k: usize = limbs * log_base2k - 5; let mut a: VecZnx = VecZnx::new(n, limbs); let mut have: Vec = vec![i64::default(); n]; let mut source = Source::new([1; 32]); have.iter_mut().for_each(|x| { *x = source .next_u64n(u64::MAX, u64::MAX) .wrapping_sub(u64::MAX / 2 + 1) as i64; }); a.encode_i64_vec(log_base2k, log_k, &have, 63); //(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i))); let mut want = vec![i64::default(); n]; //(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i))); a.decode_i64_vec(log_base2k, log_k, &mut want); izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b)); } #[test] fn test_normalize() {} }