use base2k::{ Decoding, Encoding, FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, VecZnxToMut, ZnxViewMut, ZnxZero, }; use itertools::izip; use sampling::source::Source; use crate::{ elem::Infos, ggsw_ciphertext::GGSWCiphertext, glwe_ciphertext::GLWECiphertext, glwe_ciphertext_fourier::GLWECiphertextFourier, glwe_plaintext::GLWEPlaintext, keys::{GLWEPublicKey, SecretKey, SecretKeyFourier}, keyswitch_key::GLWESwitchingKey, test_fft64::{gglwe::noise_grlwe_rlwe_product, ggsw::noise_rgsw_product}, }; #[test] fn encrypt_sk() { let module: Module = Module::::new(32); let log_base2k: usize = 8; let log_k_ct: usize = 54; let log_k_pt: usize = 30; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_ct, rank); let mut pt: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_pt); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()), ); let mut sk: SecretKey> = SecretKey::new(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk_dft.dft(&module, &sk); let mut data_want: Vec = vec![0i64; module.n()]; data_want .iter_mut() .for_each(|x| *x = source_xa.next_i64() & 0xFF); pt.data .encode_vec_i64(0, log_base2k, log_k_pt, &data_want, 10); ct.encrypt_sk( &module, &pt, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); pt.data.zero(); ct.decrypt(&module, &mut pt, &sk_dft, scratch.borrow()); let mut data_have: Vec = vec![0i64; module.n()]; pt.data .decode_vec_i64(0, log_base2k, pt.size() * log_base2k, &mut data_have); // TODO: properly assert the decryption noise through std(dec(ct) - pt) let scale: f64 = (1 << (pt.size() * log_base2k - log_k_pt)) as f64; izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| { let b_scaled = (*b as f64) / scale; assert!( (*a as f64 - b_scaled).abs() < 0.1, "{} {}", *a as f64, b_scaled ) }); } #[test] fn encrypt_zero_sk() { let module: Module = Module::::new(1024); let log_base2k: usize = 8; let log_k_ct: usize = 55; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut pt: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([1u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut sk: SecretKey> = SecretKey::new(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk_dft.dft(&module, &sk); let mut ct_dft: GLWECiphertextFourier, FFT64> = GLWECiphertextFourier::new(&module, log_base2k, log_k_ct, rank); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertextFourier::decrypt_scratch_space(&module, ct_dft.size()) | GLWECiphertextFourier::encrypt_sk_scratch_space(&module, rank, ct_dft.size()), ); ct_dft.encrypt_zero_sk( &module, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow()); assert!((sigma - pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2()) <= 0.2); } #[test] fn encrypt_pk() { let module: Module = Module::::new(32); let log_base2k: usize = 8; let log_k_ct: usize = 54; let log_k_pk: usize = 64; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_ct, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_ct); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); let mut source_xu: Source = Source::new([0u8; 32]); let mut sk: SecretKey> = SecretKey::new(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk_dft.dft(&module, &sk); let mut pk: GLWEPublicKey, FFT64> = GLWEPublicKey::new(&module, log_base2k, log_k_pk, rank); pk.generate( &module, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, ); let mut scratch: ScratchOwned = ScratchOwned::new( GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()) | GLWECiphertext::encrypt_pk_scratch_space(&module, rank, pk.size()), ); let mut data_want: Vec = vec![0i64; module.n()]; data_want .iter_mut() .for_each(|x| *x = source_xa.next_i64() & 0); pt_want .data .encode_vec_i64(0, log_base2k, log_k_ct, &data_want, 10); ct.encrypt_pk( &module, &pt_want, &pk, &mut source_xu, &mut source_xe, sigma, bound, scratch.borrow(), ); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_ct); ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_want, 0, &pt_have, 0); assert!(((1.0f64 / 12.0).sqrt() - pt_want.data.std(0, log_base2k) * (log_k_ct as f64).exp2()).abs() < 0.2); } #[test] fn keyswitch() { let module: Module = Module::::new(2048); let log_base2k: usize = 12; let log_k_grlwe: usize = 60; let log_k_rlwe_in: usize = 45; let log_k_rlwe_out: usize = 60; let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct_grlwe: GLWESwitchingKey, FFT64> = GLWESwitchingKey::new(&module, log_base2k, log_k_grlwe, rows, rank, rank); let mut ct_rlwe_in: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in, rank); let mut ct_rlwe_out: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_out, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct_rlwe_in.size()) | GLWECiphertext::keyswitch_scratch_space( &module, ct_rlwe_out.size(), ct_rlwe_in.size(), ct_grlwe.size(), ), ); let mut sk0: SecretKey> = SecretKey::new(&module, rank); sk0.fill_ternary_prob(0.5, &mut source_xs); let mut sk0_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk0_dft.dft(&module, &sk0); let mut sk1: SecretKey> = SecretKey::new(&module, rank); sk1.fill_ternary_prob(0.5, &mut source_xs); let mut sk1_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk1_dft.dft(&module, &sk1); ct_grlwe.encrypt_sk( &module, &sk0.data, &sk1_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe_in.encrypt_sk( &module, &pt_want, &sk0_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe_out.keyswitch(&module, &ct_rlwe_in, &ct_grlwe, scratch.borrow()); ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0); let noise_have: f64 = pt_have.data.std(0, log_base2k).log2(); let noise_want: f64 = noise_grlwe_rlwe_product( module.n() as f64, log_base2k, 0.5, 0.5, 0f64, sigma * sigma, 0f64, log_k_rlwe_in, log_k_grlwe, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } #[test] fn keyswich_inplace() { let module: Module = Module::::new(2048); let log_base2k: usize = 12; let log_k_grlwe: usize = 60; let log_k_rlwe: usize = 45; let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct_grlwe: GLWESwitchingKey, FFT64> = GLWESwitchingKey::new(&module, log_base2k, log_k_grlwe, rows, rank, rank); let mut ct_rlwe: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe, rank); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa); let mut scratch: ScratchOwned = ScratchOwned::new( GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct_rlwe.size()) | GLWECiphertext::keyswitch_inplace_scratch_space(&module, ct_rlwe.size(), ct_grlwe.size()), ); let mut sk0: SecretKey> = SecretKey::new(&module, rank); sk0.fill_ternary_prob(0.5, &mut source_xs); let mut sk0_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk0_dft.dft(&module, &sk0); let mut sk1: SecretKey> = SecretKey::new(&module, rank); sk1.fill_ternary_prob(0.5, &mut source_xs); let mut sk1_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk1_dft.dft(&module, &sk1); ct_grlwe.encrypt_sk( &module, &sk0.data, &sk1_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe.encrypt_sk( &module, &pt_want, &sk0_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow()); ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow()); module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0); let noise_have: f64 = pt_have.data.std(0, log_base2k).log2(); let noise_want: f64 = noise_grlwe_rlwe_product( module.n() as f64, log_base2k, 0.5, 0.5, 0f64, sigma * sigma, 0f64, log_k_rlwe, log_k_grlwe, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } #[test] fn external_product() { let module: Module = Module::::new(2048); let log_base2k: usize = 12; let log_k_grlwe: usize = 60; let log_k_rlwe_in: usize = 45; let log_k_rlwe_out: usize = 60; let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct_rgsw: GGSWCiphertext, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_grlwe, rows, rank); let mut ct_rlwe_in: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in, rank); let mut ct_rlwe_out: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_out, rank); let mut pt_rgsw: ScalarZnx> = module.new_scalar_znx(1); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa); pt_want.to_mut().at_mut(0, 0)[1] = 1; let k: usize = 1; pt_rgsw.raw_mut()[k] = 1; // X^{k} let mut scratch: ScratchOwned = ScratchOwned::new( GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct_rlwe_in.size()) | GLWECiphertext::external_product_scratch_space( &module, ct_rlwe_out.size(), ct_rlwe_in.size(), ct_rgsw.size(), ), ); let mut sk: SecretKey> = SecretKey::new(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk_dft.dft(&module, &sk); ct_rgsw.encrypt_sk( &module, &pt_rgsw, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe_in.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe_out.external_product(&module, &ct_rlwe_in, &ct_rgsw, scratch.borrow()); ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0); module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0); let noise_have: f64 = pt_have.data.std(0, log_base2k).log2(); let var_gct_err_lhs: f64 = sigma * sigma; let var_gct_err_rhs: f64 = 0f64; let var_msg: f64 = 1f64 / module.n() as f64; // X^{k} let var_a0_err: f64 = sigma * sigma; let var_a1_err: f64 = 1f64 / 12f64; let noise_want: f64 = noise_rgsw_product( module.n() as f64, log_base2k, 0.5, var_msg, var_a0_err, var_a1_err, var_gct_err_lhs, var_gct_err_rhs, log_k_rlwe_in, log_k_grlwe, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); } #[test] fn external_product_inplace() { let module: Module = Module::::new(2048); let log_base2k: usize = 12; let log_k_grlwe: usize = 60; let log_k_rlwe_in: usize = 45; let log_k_rlwe_out: usize = 60; let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k; let rank: usize = 1; let sigma: f64 = 3.2; let bound: f64 = sigma * 6.0; let mut ct_rgsw: GGSWCiphertext, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_grlwe, rows, rank); let mut ct_rlwe: GLWECiphertext> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in, rank); let mut pt_rgsw: ScalarZnx> = module.new_scalar_znx(1); let mut pt_want: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in); let mut pt_have: GLWEPlaintext> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out); let mut source_xs: Source = Source::new([0u8; 32]); let mut source_xe: Source = Source::new([0u8; 32]); let mut source_xa: Source = Source::new([0u8; 32]); // Random input plaintext pt_want .data .fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa); pt_want.to_mut().at_mut(0, 0)[1] = 1; let k: usize = 1; pt_rgsw.raw_mut()[k] = 1; // X^{k} let mut scratch: ScratchOwned = ScratchOwned::new( GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size()) | GLWECiphertext::encrypt_sk_scratch_space(&module, rank, ct_rlwe.size()) | GLWECiphertext::external_product_inplace_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size()), ); let mut sk: SecretKey> = SecretKey::new(&module, rank); sk.fill_ternary_prob(0.5, &mut source_xs); let mut sk_dft: SecretKeyFourier, FFT64> = SecretKeyFourier::new(&module, rank); sk_dft.dft(&module, &sk); ct_rgsw.encrypt_sk( &module, &pt_rgsw, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe.encrypt_sk( &module, &pt_want, &sk_dft, &mut source_xa, &mut source_xe, sigma, bound, scratch.borrow(), ); ct_rlwe.external_product_inplace(&module, &ct_rgsw, scratch.borrow()); ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow()); module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0); module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0); let noise_have: f64 = pt_have.data.std(0, log_base2k).log2(); let var_gct_err_lhs: f64 = sigma * sigma; let var_gct_err_rhs: f64 = 0f64; let var_msg: f64 = 1f64 / module.n() as f64; // X^{k} let var_a0_err: f64 = sigma * sigma; let var_a1_err: f64 = 1f64 / 12f64; let noise_want: f64 = noise_rgsw_product( module.n() as f64, log_base2k, 0.5, var_msg, var_a0_err, var_a1_err, var_gct_err_lhs, var_gct_err_rhs, log_k_rlwe_in, log_k_grlwe, ); assert!( (noise_have - noise_want).abs() <= 0.1, "{} {}", noise_have, noise_want ); }