Files
poulpy/poulpy-cpu-avx/examples/rlwe_encrypt.rs
Jean-Philippe Bossuat 4e90e08a71 Support for bivariate convolution & normalization with offset (#126)
* Add bivariate-convolution
* Add pair-wise convolution + tests + benches
* Add take_cnv_pvec_[left/right] to Scratch & updated CHANGELOG.md
* cross-base2k normalization with positive offset
* clippy & fix CI doctest avx compile error
* more streamlined bounds derivation for normalization
* Working cross-base2k normalization with pos/neg offset
* Update normalization API & tests
* Add glwe tensoring test
* Add relinearization + preliminary test
* Fix GGLWEToGGSW key infos
* Add (X,Y) convolution by const (1, Y) poly
* Faster normalization test + add bench for cnv_by_const
* Update changelog
2025-12-21 16:56:42 +01:00

154 lines
5.1 KiB
Rust

use itertools::izip;
#[cfg(all(
feature = "enable-avx",
target_arch = "x86_64",
target_feature = "avx2",
target_feature = "fma"
))]
use poulpy_cpu_avx::FFT64Avx as BackendImpl;
#[cfg(not(all(
feature = "enable-avx",
target_arch = "x86_64",
target_feature = "avx2",
target_feature = "fma"
)))]
use poulpy_cpu_ref::FFT64Ref as BackendImpl;
use poulpy_hal::{
api::{
ModuleNew, ScratchOwnedAlloc, ScratchOwnedBorrow, SvpApplyDftToDftInplace, SvpPPolAlloc, SvpPrepare, VecZnxAddNormal,
VecZnxBigAddSmallInplace, VecZnxBigAlloc, VecZnxBigNormalize, VecZnxBigNormalizeTmpBytes, VecZnxBigSubSmallNegateInplace,
VecZnxDftAlloc, VecZnxDftApply, VecZnxFillUniform, VecZnxIdftApplyTmpA, VecZnxNormalizeInplace,
},
layouts::{Module, ScalarZnx, ScratchOwned, SvpPPol, VecZnx, VecZnxBig, VecZnxDft, ZnxInfos},
source::Source,
};
fn main() {
let n: usize = 16;
let base2k: usize = 18;
let ct_size: usize = 3;
let msg_size: usize = 2;
let log_scale: usize = msg_size * base2k - 5;
let module: Module<BackendImpl> = Module::<BackendImpl>::new(n as u64);
let mut scratch: ScratchOwned<BackendImpl> = ScratchOwned::<BackendImpl>::alloc(module.vec_znx_big_normalize_tmp_bytes());
let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed);
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
let mut s: ScalarZnx<Vec<u8>> = ScalarZnx::alloc(module.n(), 1);
s.fill_ternary_prob(0, 0.5, &mut source);
// Buffer to store s in the DFT domain
let mut s_dft: SvpPPol<Vec<u8>, BackendImpl> = module.svp_ppol_alloc(s.cols());
// s_dft <- DFT(s)
module.svp_prepare(&mut s_dft, 0, &s, 0);
// Allocates a VecZnx with two columns: ct=(0, 0)
let mut ct: VecZnx<Vec<u8>> = VecZnx::alloc(
module.n(),
2, // Number of columns
ct_size, // Number of small poly per column
);
// Fill the second column with random values: ct = (0, a)
module.vec_znx_fill_uniform(base2k, &mut ct, 1, &mut source);
let mut buf_dft: VecZnxDft<Vec<u8>, BackendImpl> = module.vec_znx_dft_alloc(1, ct_size);
module.vec_znx_dft_apply(1, 0, &mut buf_dft, 0, &ct, 1);
// Applies DFT(ct[1]) * DFT(s)
module.svp_apply_dft_to_dft_inplace(
&mut buf_dft, // DFT(ct[1] * s)
0, // Selects the first column of res
&s_dft, // DFT(s)
0, // Selects the first column of s_dft
);
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
// BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
let mut buf_big: VecZnxBig<Vec<u8>, BackendImpl> = module.vec_znx_big_alloc(1, ct_size);
module.vec_znx_idft_apply_tmpa(&mut buf_big, 0, &mut buf_dft, 0);
// Creates a plaintext: VecZnx with 1 column
let mut m = VecZnx::alloc(
module.n(),
1, // Number of columns
msg_size, // Number of small polynomials
);
let mut want: Vec<i64> = vec![0; n];
want.iter_mut().for_each(|x| *x = source.next_u64n(16, 15) as i64);
m.encode_vec_i64(base2k, 0, log_scale, &want);
module.vec_znx_normalize_inplace(base2k, &mut m, 0, scratch.borrow());
// m - BIG(ct[1] * s)
module.vec_znx_big_sub_small_negate_inplace(
&mut buf_big,
0, // Selects the first column of the receiver
&m,
0, // Selects the first column of the message
);
// Normalizes back to VecZnx
// ct[0] <- m - BIG(c1 * s)
module.vec_znx_big_normalize(
&mut ct,
base2k,
0,
0, // Selects the first column of ct (ct[0])
&buf_big,
base2k,
0, // Selects the first column of buf_big
scratch.borrow(),
);
// Add noise to ct[0]
// ct[0] <- ct[0] + e
module.vec_znx_add_normal(
base2k,
&mut ct,
0, // Selects the first column of ct (ct[0])
base2k * ct_size, // Scaling of the noise: 2^{-base2k * limbs}
&mut source,
3.2, // Standard deviation
3.2 * 6.0, // Truncatation bound
);
// Final ciphertext: ct = (-a * s + m + e, a)
// Decryption
// DFT(ct[1] * s)
module.vec_znx_dft_apply(1, 0, &mut buf_dft, 0, &ct, 1);
module.svp_apply_dft_to_dft_inplace(
&mut buf_dft,
0, // Selects the first column of res.
&s_dft,
0,
);
// BIG(c1 * s) = IDFT(DFT(c1 * s))
module.vec_znx_idft_apply_tmpa(&mut buf_big, 0, &mut buf_dft, 0);
// BIG(c1 * s) + ct[0]
module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
// m + e <- BIG(ct[1] * s + ct[0])
let mut res = VecZnx::alloc(module.n(), 1, ct_size);
module.vec_znx_big_normalize(&mut res, base2k, 0, 0, &buf_big, base2k, 0, scratch.borrow());
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];
res.decode_vec_i64(base2k, 0, ct_size * base2k, &mut have);
let scale: f64 = (1 << (res.size() * base2k - log_scale)) as f64;
izip!(want.iter(), have.iter()).enumerate().for_each(|(i, (a, b))| {
println!("{}: {} {}", i, a, (*b as f64) / scale);
});
}