Files
poulpy/poulpy-schemes/src/tfhe/blind_rotation/cggi_algo.rs
Pro7ech 15ee02e21d wip
2025-10-15 15:39:52 +02:00

562 lines
20 KiB
Rust

use itertools::izip;
use poulpy_hal::{
api::{
ScratchAvailable, SvpApplyDftToDft, SvpPPolBytesOf, TakeVecZnx, TakeVecZnxBig, TakeVecZnxDft, TakeVecZnxDftSlice,
TakeVecZnxSlice, VecZnxAddInplace, VecZnxBigAddSmallInplace, VecZnxBigBytesOf, VecZnxBigNormalize,
VecZnxBigNormalizeTmpBytes, VecZnxCopy, VecZnxDftAdd, VecZnxDftAddInplace, VecZnxDftApply, VecZnxDftBytesOf,
VecZnxDftSubInplace, VecZnxDftZero, VecZnxIdftApply, VecZnxIdftApplyConsume, VecZnxIdftApplyTmpBytes,
VecZnxMulXpMinusOneInplace, VecZnxNormalize, VecZnxNormalizeInplace, VecZnxNormalizeTmpBytes, VecZnxRotate,
VecZnxSubInplace, VmpApplyDftToDft, VmpApplyDftToDftAdd, VmpApplyDftToDftTmpBytes,
},
layouts::{Backend, DataMut, DataRef, Module, Scratch, SvpPPol, VecZnx, ZnxView, ZnxZero},
};
use poulpy_core::{
Distribution, GLWEOperations, TakeGLWE,
layouts::{GGSWInfos, GLWE, GLWEInfos, GLWEToMut, LWE, LWECiphertextToRef, LWEInfos},
};
use crate::tfhe::blind_rotation::{
BlincRotationExecute, BlindRotationKeyInfos, BlindRotationKeyPrepared, CGGI, LookUpTable, LookUpTableRotationDirection,
};
#[allow(clippy::too_many_arguments)]
pub fn cggi_blind_rotate_tmp_bytes<B: Backend, OUT, GGSW>(
module: &Module<B>,
block_size: usize,
extension_factor: usize,
glwe_infos: &OUT,
brk_infos: &GGSW,
) -> usize
where
OUT: GLWEInfos,
GGSW: GGSWInfos,
Module<B>: VecZnxDftBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxNormalizeTmpBytes
+ VecZnxBigBytesOf
+ VecZnxIdftApplyTmpBytes
+ VecZnxBigNormalizeTmpBytes,
{
let brk_size: usize = brk_infos.size();
if block_size > 1 {
let cols: usize = (brk_infos.rank() + 1).into();
let dnum: usize = brk_infos.dnum().into();
let acc_dft: usize = module.bytes_of_vec_znx_dft(cols, dnum) * extension_factor;
let acc_big: usize = module.bytes_of_vec_znx_big(1, brk_size);
let vmp_res: usize = module.bytes_of_vec_znx_dft(cols, brk_size) * extension_factor;
let vmp_xai: usize = module.bytes_of_vec_znx_dft(1, brk_size);
let acc_dft_add: usize = vmp_res;
let vmp: usize = module.vmp_apply_dft_to_dft_tmp_bytes(brk_size, dnum, dnum, 2, 2, brk_size); // GGSW product: (1 x 2) x (2 x 2)
let acc: usize = if extension_factor > 1 {
VecZnx::bytes_of(module.n(), cols, glwe_infos.size()) * extension_factor
} else {
0
};
acc + acc_dft
+ acc_dft_add
+ vmp_res
+ vmp_xai
+ (vmp | (acc_big + (module.vec_znx_big_normalize_tmp_bytes() | module.vec_znx_idft_apply_tmp_bytes())))
} else {
GLWE::bytes_of(glwe_infos) + GLWE::external_product_inplace_tmp_bytes(module, glwe_infos, brk_infos)
}
}
impl<D: DataRef, B: Backend> BlincRotationExecute<B> for BlindRotationKeyPrepared<D, CGGI, B>
where
Module<B>: VecZnxBigBytesOf
+ VecZnxDftBytesOf
+ SvpPPolBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigNormalizeTmpBytes
+ VecZnxIdftApplyTmpBytes
+ VecZnxIdftApply<B>
+ VecZnxDftAdd<B>
+ VecZnxDftAddInplace<B>
+ VecZnxDftApply<B>
+ VecZnxDftZero<B>
+ SvpApplyDftToDft<B>
+ VecZnxDftSubInplace<B>
+ VecZnxBigAddSmallInplace<B>
+ VecZnxRotate
+ VecZnxAddInplace
+ VecZnxSubInplace
+ VecZnxNormalize<B>
+ VecZnxNormalizeInplace<B>
+ VecZnxCopy
+ VecZnxMulXpMinusOneInplace<B>
+ VmpApplyDftToDft<B>
+ VmpApplyDftToDftAdd<B>
+ VecZnxIdftApplyConsume<B>
+ VecZnxBigNormalize<B>
+ VecZnxNormalizeTmpBytes,
Scratch<B>: TakeVecZnxDftSlice<B> + TakeVecZnxDft<B> + TakeVecZnxBig<B> + TakeVecZnxSlice + TakeVecZnx + ScratchAvailable,
{
fn execute<DR: DataMut, DI: DataRef>(
&self,
module: &Module<B>,
res: &mut GLWE<DR>,
lwe: &LWE<DI>,
lut: &LookUpTable,
scratch: &mut Scratch<B>,
) {
match self.dist {
Distribution::BinaryBlock(_) | Distribution::BinaryFixed(_) | Distribution::BinaryProb(_) | Distribution::ZERO => {
if lut.extension_factor() > 1 {
execute_block_binary_extended(module, res, lwe, lut, self, scratch)
} else if self.block_size() > 1 {
execute_block_binary(module, res, lwe, lut, self, scratch);
} else {
execute_standard(module, res, lwe, lut, self, scratch);
}
}
_ => panic!("invalid CGGI distribution"),
}
}
}
fn execute_block_binary_extended<DataRes, DataIn, DataBrk, B: Backend>(
module: &Module<B>,
res: &mut GLWE<DataRes>,
lwe: &LWE<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyPrepared<DataBrk, CGGI, B>,
scratch: &mut Scratch<B>,
) where
DataRes: DataMut,
DataIn: DataRef,
DataBrk: DataRef,
Module<B>: VecZnxBigBytesOf
+ VecZnxDftBytesOf
+ SvpPPolBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigNormalizeTmpBytes
+ VecZnxIdftApplyTmpBytes
+ VecZnxIdftApply<B>
+ VecZnxDftAdd<B>
+ VecZnxDftAddInplace<B>
+ VecZnxDftApply<B>
+ VecZnxDftZero<B>
+ SvpApplyDftToDft<B>
+ VecZnxDftSubInplace<B>
+ VecZnxBigAddSmallInplace<B>
+ VecZnxRotate
+ VecZnxAddInplace
+ VecZnxSubInplace
+ VecZnxNormalize<B>
+ VecZnxNormalizeInplace<B>
+ VecZnxCopy
+ VecZnxMulXpMinusOneInplace<B>
+ VecZnxBigNormalize<B>
+ VmpApplyDftToDft<B>,
Scratch<B>: TakeVecZnxDftSlice<B> + TakeVecZnxDft<B> + TakeVecZnxBig<B> + TakeVecZnxSlice + ScratchAvailable + TakeVecZnx,
{
let n_glwe: usize = brk.n_glwe().into();
let extension_factor: usize = lut.extension_factor();
let base2k: usize = res.base2k().into();
let dnum: usize = brk.dnum().into();
let cols: usize = (res.rank() + 1).into();
let (mut acc, scratch_1) = scratch.take_vec_znx_slice(extension_factor, n_glwe, cols, res.size());
let (mut acc_dft, scratch_2) = scratch_1.take_vec_znx_dft_slice(extension_factor, n_glwe, cols, dnum);
let (mut vmp_res, scratch_3) = scratch_2.take_vec_znx_dft_slice(extension_factor, n_glwe, cols, brk.size());
let (mut acc_add_dft, scratch_4) = scratch_3.take_vec_znx_dft_slice(extension_factor, n_glwe, cols, brk.size());
let (mut vmp_xai, scratch_5) = scratch_4.take_vec_znx_dft(n_glwe, 1, brk.size());
(0..extension_factor).for_each(|i| {
acc[i].zero();
});
let x_pow_a: &Vec<SvpPPol<Vec<u8>, B>>;
if let Some(b) = &brk.x_pow_a {
x_pow_a = b
} else {
panic!("invalid key: x_pow_a has not been initialized")
}
let mut lwe_2n: Vec<i64> = vec![0i64; (lwe.n() + 1).as_usize()]; // TODO: from scratch space
let lwe_ref: LWE<&[u8]> = lwe.to_ref();
let two_n: usize = 2 * n_glwe;
let two_n_ext: usize = 2 * lut.domain_size();
mod_switch_2n(two_n_ext, &mut lwe_2n, &lwe_ref, lut.rotation_direction());
let a: &[i64] = &lwe_2n[1..];
let b_pos: usize = ((lwe_2n[0] + two_n_ext as i64) & (two_n_ext - 1) as i64) as usize;
let b_hi: usize = b_pos / extension_factor;
let b_lo: usize = b_pos & (extension_factor - 1);
for (i, j) in (0..b_lo).zip(extension_factor - b_lo..extension_factor) {
module.vec_znx_rotate(b_hi as i64 + 1, &mut acc[i], 0, &lut.data[j], 0);
}
for (i, j) in (b_lo..extension_factor).zip(0..extension_factor - b_lo) {
module.vec_znx_rotate(b_hi as i64, &mut acc[i], 0, &lut.data[j], 0);
}
let block_size: usize = brk.block_size();
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.for_each(|(ai, ski)| {
(0..extension_factor).for_each(|i| {
(0..cols).for_each(|j| {
module.vec_znx_dft_apply(1, 0, &mut acc_dft[i], j, &acc[i], j);
});
module.vec_znx_dft_zero(&mut acc_add_dft[i])
});
// TODO: first & last iterations can be optimized
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
let ai_pos: usize = ((aii + two_n_ext as i64) & (two_n_ext - 1) as i64) as usize;
let ai_hi: usize = ai_pos / extension_factor;
let ai_lo: usize = ai_pos & (extension_factor - 1);
// vmp_res = DFT(acc) * BRK[i]
(0..extension_factor).for_each(|i| {
module.vmp_apply_dft_to_dft(&mut vmp_res[i], &acc_dft[i], skii.data(), scratch_5);
});
// Trivial case: no rotation between polynomials, we can directly multiply with (X^{-ai} - 1)
if ai_lo == 0 {
// Sets acc_add_dft[i] = (acc[i] * sk) * X^{-ai} - (acc[i] * sk)
if ai_hi != 0 {
// DFT X^{-ai}
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.svp_apply_dft_to_dft(&mut vmp_xai, 0, &x_pow_a[ai_hi], 0, &vmp_res[j], i);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[j], i, &vmp_xai, 0);
module.vec_znx_dft_sub_inplace(&mut acc_add_dft[j], i, &vmp_res[j], i);
});
});
}
// Non trivial case: rotation between polynomials
// In this case we can't directly multiply with (X^{-ai} - 1) because of the
// ring homomorphism R^{N} -> prod R^{N/extension_factor}, so we split the
// computation in two steps: acc_add_dft = (acc * sk) * (-1) + (acc * sk) * X^{-ai}
} else {
// Sets acc_add_dft[0..ai_lo] += (acc[extension_factor - ai_lo..extension_factor] * sk) * X^{-ai+1}
if (ai_hi + 1) & (two_n - 1) != 0 {
for (i, j) in (0..ai_lo).zip(extension_factor - ai_lo..extension_factor) {
(0..cols).for_each(|k| {
module.svp_apply_dft_to_dft(&mut vmp_xai, 0, &x_pow_a[ai_hi + 1], 0, &vmp_res[j], k);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i], k, &vmp_xai, 0);
module.vec_znx_dft_sub_inplace(&mut acc_add_dft[i], k, &vmp_res[i], k);
});
}
}
// Sets acc_add_dft[ai_lo..extension_factor] += (acc[0..extension_factor - ai_lo] * sk) * X^{-ai}
if ai_hi != 0 {
// Sets acc_add_dft[ai_lo..extension_factor] += (acc[0..extension_factor - ai_lo] * sk) * X^{-ai}
for (i, j) in (ai_lo..extension_factor).zip(0..extension_factor - ai_lo) {
(0..cols).for_each(|k| {
module.svp_apply_dft_to_dft(&mut vmp_xai, 0, &x_pow_a[ai_hi], 0, &vmp_res[j], k);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i], k, &vmp_xai, 0);
module.vec_znx_dft_sub_inplace(&mut acc_add_dft[i], k, &vmp_res[i], k);
});
}
}
}
});
{
let (mut acc_add_big, scratch7) = scratch_5.take_vec_znx_big(n_glwe, 1, brk.size());
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.vec_znx_idft_apply(&mut acc_add_big, 0, &acc_add_dft[j], i, scratch7);
module.vec_znx_big_add_small_inplace(&mut acc_add_big, 0, &acc[j], i);
module.vec_znx_big_normalize(base2k, &mut acc[j], i, base2k, &acc_add_big, 0, scratch7);
});
});
}
});
(0..cols).for_each(|i| {
module.vec_znx_copy(res.data_mut(), i, &acc[0], i);
});
}
fn execute_block_binary<DataRes, DataIn, DataBrk, B: Backend>(
module: &Module<B>,
res: &mut GLWE<DataRes>,
lwe: &LWE<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyPrepared<DataBrk, CGGI, B>,
scratch: &mut Scratch<B>,
) where
DataRes: DataMut,
DataIn: DataRef,
DataBrk: DataRef,
Module<B>: VecZnxBigBytesOf
+ VecZnxDftBytesOf
+ SvpPPolBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigNormalizeTmpBytes
+ VecZnxIdftApplyTmpBytes
+ VecZnxIdftApply<B>
+ VecZnxDftAdd<B>
+ VecZnxDftAddInplace<B>
+ VecZnxDftApply<B>
+ VecZnxDftZero<B>
+ SvpApplyDftToDft<B>
+ VecZnxDftSubInplace<B>
+ VecZnxBigAddSmallInplace<B>
+ VecZnxRotate
+ VecZnxAddInplace
+ VecZnxSubInplace
+ VecZnxNormalize<B>
+ VecZnxNormalizeInplace<B>
+ VecZnxCopy
+ VecZnxMulXpMinusOneInplace<B>
+ VmpApplyDftToDft<B>
+ VecZnxBigNormalize<B>,
Scratch<B>: TakeVecZnxDftSlice<B> + TakeVecZnxDft<B> + TakeVecZnxBig<B> + TakeVecZnxSlice + ScratchAvailable + TakeVecZnx,
{
let n_glwe: usize = brk.n_glwe().into();
let mut lwe_2n: Vec<i64> = vec![0i64; (lwe.n() + 1).into()]; // TODO: from scratch space
let mut out_mut: GLWE<&mut [u8]> = res.to_mut();
let lwe_ref: LWE<&[u8]> = lwe.to_ref();
let two_n: usize = n_glwe << 1;
let base2k: usize = brk.base2k().into();
let dnum: usize = brk.dnum().into();
let cols: usize = (out_mut.rank() + 1).into();
mod_switch_2n(
2 * lut.domain_size(),
&mut lwe_2n,
&lwe_ref,
lut.rotation_direction(),
);
let a: &[i64] = &lwe_2n[1..];
let b: i64 = lwe_2n[0];
out_mut.data_mut().zero();
// Initialize out to X^{b} * LUT(X)
module.vec_znx_rotate(b, out_mut.data_mut(), 0, &lut.data[0], 0);
let block_size: usize = brk.block_size();
// ACC + [sum DFT(X^ai -1) * (DFT(ACC) x BRKi)]
let (mut acc_dft, scratch_1) = scratch.take_vec_znx_dft(n_glwe, cols, dnum);
let (mut vmp_res, scratch_2) = scratch_1.take_vec_znx_dft(n_glwe, cols, brk.size());
let (mut acc_add_dft, scratch_3) = scratch_2.take_vec_znx_dft(n_glwe, cols, brk.size());
let (mut vmp_xai, scratch_4) = scratch_3.take_vec_znx_dft(n_glwe, 1, brk.size());
let x_pow_a: &Vec<SvpPPol<Vec<u8>, B>>;
if let Some(b) = &brk.x_pow_a {
x_pow_a = b
} else {
panic!("invalid key: x_pow_a has not been initialized")
}
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.for_each(|(ai, ski)| {
(0..cols).for_each(|j| {
module.vec_znx_dft_apply(1, 0, &mut acc_dft, j, out_mut.data_mut(), j);
});
module.vec_znx_dft_zero(&mut acc_add_dft);
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
let ai_pos: usize = ((aii + two_n as i64) & (two_n - 1) as i64) as usize;
// vmp_res = DFT(acc) * BRK[i]
module.vmp_apply_dft_to_dft(&mut vmp_res, &acc_dft, skii.data(), scratch_4);
// DFT(X^ai -1) * (DFT(acc) * BRK[i])
(0..cols).for_each(|i| {
module.svp_apply_dft_to_dft(&mut vmp_xai, 0, &x_pow_a[ai_pos], 0, &vmp_res, i);
module.vec_znx_dft_add_inplace(&mut acc_add_dft, i, &vmp_xai, 0);
module.vec_znx_dft_sub_inplace(&mut acc_add_dft, i, &vmp_res, i);
});
});
{
let (mut acc_add_big, scratch_5) = scratch_4.take_vec_znx_big(n_glwe, 1, brk.size());
(0..cols).for_each(|i| {
module.vec_znx_idft_apply(&mut acc_add_big, 0, &acc_add_dft, i, scratch_5);
module.vec_znx_big_add_small_inplace(&mut acc_add_big, 0, out_mut.data_mut(), i);
module.vec_znx_big_normalize(
base2k,
out_mut.data_mut(),
i,
base2k,
&acc_add_big,
0,
scratch_5,
);
});
}
});
}
fn execute_standard<DataRes, DataIn, DataBrk, B: Backend>(
module: &Module<B>,
res: &mut GLWE<DataRes>,
lwe: &LWE<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyPrepared<DataBrk, CGGI, B>,
scratch: &mut Scratch<B>,
) where
DataRes: DataMut,
DataIn: DataRef,
DataBrk: DataRef,
Module<B>: VecZnxBigBytesOf
+ VecZnxDftBytesOf
+ SvpPPolBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigNormalizeTmpBytes
+ VecZnxIdftApplyTmpBytes
+ VecZnxIdftApply<B>
+ VecZnxDftAdd<B>
+ VecZnxDftAddInplace<B>
+ VecZnxDftApply<B>
+ VecZnxDftZero<B>
+ SvpApplyDftToDft<B>
+ VecZnxDftSubInplace<B>
+ VecZnxBigAddSmallInplace<B>
+ VecZnxRotate
+ VecZnxAddInplace
+ VecZnxSubInplace
+ VecZnxNormalize<B>
+ VecZnxNormalizeInplace<B>
+ VecZnxCopy
+ VecZnxMulXpMinusOneInplace<B>
+ VmpApplyDftToDft<B>
+ VmpApplyDftToDftAdd<B>
+ VecZnxIdftApplyConsume<B>
+ VecZnxBigNormalize<B>
+ VecZnxNormalizeTmpBytes,
Scratch<B>: TakeVecZnxDftSlice<B> + TakeVecZnxDft<B> + TakeVecZnxBig<B> + TakeVecZnxSlice + ScratchAvailable + TakeVecZnx,
{
#[cfg(debug_assertions)]
{
assert_eq!(
res.n(),
brk.n(),
"res.n(): {} != brk.n(): {}",
res.n(),
brk.n()
);
assert_eq!(
lut.domain_size(),
brk.n_glwe().as_usize(),
"lut.n(): {} != brk.n(): {}",
lut.domain_size(),
brk.n_glwe().as_usize()
);
assert_eq!(
res.rank(),
brk.rank(),
"res.rank(): {} != brk.rank(): {}",
res.rank(),
brk.rank()
);
assert_eq!(
lwe.n(),
brk.n_lwe(),
"lwe.n(): {} != brk.data.len(): {}",
lwe.n(),
brk.n_lwe()
);
}
let mut lwe_2n: Vec<i64> = vec![0i64; (lwe.n() + 1).into()]; // TODO: from scratch space
let mut out_mut: GLWE<&mut [u8]> = res.to_mut();
let lwe_ref: LWE<&[u8]> = lwe.to_ref();
mod_switch_2n(
2 * lut.domain_size(),
&mut lwe_2n,
&lwe_ref,
lut.rotation_direction(),
);
let a: &[i64] = &lwe_2n[1..];
let b: i64 = lwe_2n[0];
out_mut.data_mut().zero();
// Initialize out to X^{b} * LUT(X)
module.vec_znx_rotate(b, out_mut.data_mut(), 0, &lut.data[0], 0);
// ACC + [sum DFT(X^ai -1) * (DFT(ACC) x BRKi)]
let (mut acc_tmp, scratch_1) = scratch.take_glwe_ct(&out_mut);
// TODO: see if faster by skipping normalization in external product and keeping acc in big coeffs
// TODO: first iteration can be optimized to be a gglwe product
izip!(a.iter(), brk.data.iter()).for_each(|(ai, ski)| {
// acc_tmp = sk[i] * acc
acc_tmp.external_product(module, &out_mut, ski, scratch_1);
// acc_tmp = (sk[i] * acc) * (X^{ai} - 1)
acc_tmp.mul_xp_minus_one_inplace(module, *ai, scratch_1);
// acc = acc + (sk[i] * acc) * (X^{ai} - 1)
out_mut.add_inplace(module, &acc_tmp);
});
// We can normalize only at the end because we add normalized values in [-2^{base2k-1}, 2^{base2k-1}]
// on top of each others, thus ~ 2^{63-base2k} additions are supported before overflow.
out_mut.normalize_inplace(module, scratch_1);
}
pub fn mod_switch_2n(n: usize, res: &mut [i64], lwe: &LWE<&[u8]>, rot_dir: LookUpTableRotationDirection) {
let base2k: usize = lwe.base2k().into();
let log2n: usize = usize::BITS as usize - (n - 1).leading_zeros() as usize + 1;
res.copy_from_slice(lwe.data().at(0, 0));
match rot_dir {
LookUpTableRotationDirection::Left => {
res.iter_mut().for_each(|x| *x = -*x);
}
LookUpTableRotationDirection::Right => {}
}
if base2k > log2n {
let diff: usize = base2k - (log2n - 1); // additional -1 because we map to [-N/2, N/2) instead of [0, N)
res.iter_mut().for_each(|x| {
*x = div_round_by_pow2(x, diff);
})
} else {
let rem: usize = base2k - (log2n % base2k);
let size: usize = log2n.div_ceil(base2k);
(1..size).for_each(|i| {
if i == size - 1 && rem != base2k {
let k_rem: usize = base2k - rem;
izip!(lwe.data().at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(lwe.data().at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << base2k) + x;
});
}
})
}
}
#[inline(always)]
fn div_round_by_pow2(x: &i64, k: usize) -> i64 {
(x + (1 << (k - 1))) >> k
}