Files
poulpy/base2k/src/vec_znx.rs
2025-02-10 16:01:33 +01:00

654 lines
20 KiB
Rust

use crate::cast_mut_u8_to_mut_i64_slice;
use crate::ffi::vec_znx;
use crate::ffi::znx;
use crate::{Infos, Module};
use itertools::izip;
use std::cmp::min;
/// [VecZnx] represents a vector of small norm polynomials of Zn\[X\] with [i64] coefficients.
/// A [VecZnx] is composed of multiple Zn\[X\] polynomials stored in a single contiguous array
/// in the memory.
#[derive(Clone)]
pub struct VecZnx {
/// Polynomial degree.
pub n: usize,
/// Polynomial coefficients, as a contiguous array. Each limb is equally spaced by n.
pub data: Vec<i64>,
}
impl VecZnx {
/// Allocates a new [VecZnx] composed of #limbs polynomials of Z\[X\].
pub fn new(n: usize, limbs: usize) -> Self {
Self {
n: n,
data: vec![i64::default(); n * limbs],
}
}
/// Returns the minimum size of the [u8] array required to assign a
/// new backend array to a [VecZnx] through [VecZnx::from_bytes].
pub fn bytes(n: usize, limbs: usize) -> usize {
n * limbs * 8
}
/// Returns a new [VecZnx] with the provided data as backing array.
/// User must ensure that data is properly alligned and that
/// the size of data is at least equal to [Module::bytes_of_vec_znx].
pub fn from_bytes(n: usize, limbs: usize, buf: &mut [u8]) -> VecZnx {
let size = Self::bytes(n, limbs);
assert!(
buf.len() >= size,
"invalid buffer: buf.len()={} < self.buffer_size(n={}, limbs={})={}",
buf.len(),
n,
limbs,
size
);
VecZnx {
n: n,
data: Vec::from(cast_mut_u8_to_mut_i64_slice(&mut buf[..size])),
}
}
/// Copies the coefficients of `a` on the receiver.
/// Copy is done with the minimum size matching both backing arrays.
pub fn copy_from(&mut self, a: &VecZnx) {
let size = min(self.data.len(), a.data.len());
self.data[..size].copy_from_slice(&a.data[..size])
}
/// Returns a non-mutable pointer to the backing array of the [VecZnx].
pub fn as_ptr(&self) -> *const i64 {
self.data.as_ptr()
}
/// Returns a mutable pointer to the backing array of the [VecZnx].
pub fn as_mut_ptr(&mut self) -> *mut i64 {
self.data.as_mut_ptr()
}
/// Returns a non-mutable reference to the i-th limb of the [VecZnx].
pub fn at(&self, i: usize) -> &[i64] {
&self.data[i * self.n..(i + 1) * self.n]
}
/// Returns a mutable reference to the i-th limb of the [VecZnx].
pub fn at_mut(&mut self, i: usize) -> &mut [i64] {
&mut self.data[i * self.n..(i + 1) * self.n]
}
/// Returns a non-mutable pointer to the i-th limb of the [VecZnx].
pub fn at_ptr(&self, i: usize) -> *const i64 {
&self.data[i * self.n] as *const i64
}
/// Returns a mutable pointer to the i-th limb of the [VecZnx].
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
&mut self.data[i * self.n] as *mut i64
}
/// Zeroes the backing array of the [VecZnx].
pub fn zero(&mut self) {
unsafe { znx::znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
}
/// Normalizes the [VecZnx], ensuring all coefficients are in the interval \[-2^log_base2k, 2^log_base2k].
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the base to reduce to.
/// * `carry`: scratch space of size at least self.n()<<3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.data.len()*8.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
/// use sampling::source::Source;
///
/// let n: usize = 8; // polynomial degree
/// let log_base2k: usize = 17; // base two logarithm of the coefficients decomposition
/// let limbs: usize = 5; // number of limbs (i.e. can store coeffs in the range +/- 2^{limbs * log_base2k - 1})
/// let log_k: usize = limbs * log_base2k - 5;
/// let mut a: VecZnx = VecZnx::new(n, limbs);
/// let mut carry: Vec<u8> = vec![u8::default(); a.n()<<3];
/// let mut have: Vec<i64> = vec![i64::default(); a.n()];
/// let mut source = Source::new([1; 32]);
///
/// // Populates the first limb of the of polynomials with random i64 values.
/// have.iter_mut().for_each(|x| {
/// *x = source
/// .next_u64n(u64::MAX, u64::MAX)
/// .wrapping_sub(u64::MAX / 2 + 1) as i64;
/// });
/// a.encode_vec_i64(log_base2k, log_k, &have, 63);
/// a.normalize(log_base2k, &mut carry);
///
/// // Ensures normalized values are in the range +/- 2^{log_base2k-1}
/// let base_half = 1 << (log_base2k - 1);
/// a.data
/// .iter()
/// .for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
///
/// // Ensures reconstructed normalized values are equal to non-normalized values.
/// let mut want = vec![i64::default(); n];
/// a.decode_vec_i64(log_base2k, log_k, &mut want);
/// izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
assert!(
carry.len() >= self.n * 8,
"invalid carry: carry.len()={} < self.n()={}",
carry.len(),
self.n()
);
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
(0..self.limbs()).rev().for_each(|i| {
znx::znx_normalize(
self.n as u64,
log_base2k as u64,
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
)
});
}
}
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
///
/// # Arguments
///
/// * `k`: the power to which to map each coefficients.
/// * `limbs`: the number of limbs on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `limbs` is greater than `self.limbs()`.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
///
/// let n: usize = 8; // polynomial degree
/// let mut a: VecZnx = VecZnx::new(n, 2);
/// let mut b: VecZnx = VecZnx::new(n, 2);
///
/// (0..a.limbs()).for_each(|i|{
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
/// *x = i as i64
/// })
/// });
///
/// b.copy_from(&a);
///
/// a.automorphism_inplace(-1, 1); // X^i -> X^(-i)
/// let limb = b.at_mut(0);
/// (1..limb.len()).for_each(|i|{
/// limb[n-i] = -(i as i64)
/// });
/// izip!(a.data.iter(), b.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn automorphism_inplace(&mut self, k: i64, limbs: usize) {
assert!(
limbs <= self.limbs(),
"invalid limbs argument: limbs={} > self.limbs()={}",
limbs,
self.limbs()
);
unsafe {
(0..limbs).for_each(|i| {
znx::znx_automorphism_inplace_i64(self.n as u64, k, self.at_mut_ptr(i))
})
}
}
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
///
/// # Arguments
///
/// * `a`: the receiver.
/// * `k`: the power to which to map each coefficients.
/// * `limbs`: the number of limbs on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `limbs` is greater than `self.limbs()` or `a.limbs()`.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
///
/// let n: usize = 8; // polynomial degree
/// let mut a: VecZnx = VecZnx::new(n, 2);
/// let mut b: VecZnx = VecZnx::new(n, 2);
/// let mut c: VecZnx = VecZnx::new(n, 2);
///
/// (0..a.limbs()).for_each(|i|{
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
/// *x = i as i64
/// })
/// });
///
/// a.automorphism(&mut b, -1, 1); // X^i -> X^(-i)
/// let limb = c.at_mut(0);
/// (1..limb.len()).for_each(|i|{
/// limb[n-i] = -(i as i64)
/// });
/// izip!(b.data.iter(), c.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn automorphism(&mut self, a: &mut VecZnx, k: i64, limbs: usize) {
assert!(
limbs <= self.limbs(),
"invalid limbs argument: limbs={} > self.limbs()={}",
limbs,
self.limbs()
);
assert!(
limbs <= a.limbs(),
"invalid limbs argument: limbs={} > a.limbs()={}",
limbs,
a.limbs()
);
unsafe {
(0..limbs).for_each(|i| {
znx::znx_automorphism_i64(self.n as u64, k, a.at_mut_ptr(i), self.at_ptr(i))
})
}
}
/// Truncates the precision of the [VecZnx] by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the number of bits of precision to drop.
pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
if k == 0 {
return;
}
self.data
.truncate((self.limbs() - k / log_base2k) * self.n());
let k_rem: usize = k % log_base2k;
if k_rem != 0 {
let mask: i64 = ((1 << (log_base2k - k_rem - 1)) - 1) << k_rem;
self.at_mut(self.limbs() - 1)
.iter_mut()
.for_each(|x: &mut i64| *x &= mask)
}
}
/// Right shifts the coefficients by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the shift amount.
/// * `carry`: scratch space of size at least equal to self.n() * self.limbs() << 3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.n() * self.limbs() << 3.
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
assert!(
carry.len() >> 3 >= self.n(),
"invalid carry: carry.len()/8={} < self.n()={}",
carry.len() >> 3,
self.n()
);
let limbs: usize = self.limbs();
let limbs_steps: usize = k / log_base2k;
self.data.rotate_right(self.n * limbs_steps);
unsafe {
znx::znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
}
let k_rem = k % log_base2k;
if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
}
let mask: i64 = (1 << k_rem) - 1;
let log_base2k: usize = log_base2k;
(limbs_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
*xi += *ci << log_base2k;
*ci = *xi & mask;
*xi /= 1 << k_rem;
});
})
}
}
/// If self.n() > a.n(): Extracts X^{i*self.n()/a.n()} -> X^{i}.
/// If self.n() < a.n(): Extracts X^{i} -> X^{i*a.n()/self.n()}.
///
/// # Arguments
///
/// * `a`: the receiver polynomial in which the extracted coefficients are stored.
pub fn switch_degree(&self, a: &mut VecZnx) {
let (n_in, n_out) = (self.n(), a.n());
let (gap_in, gap_out): (usize, usize);
if n_in > n_out {
(gap_in, gap_out) = (n_in / n_out, 1)
} else {
(gap_in, gap_out) = (1, n_out / n_in);
a.zero();
}
let limbs = min(self.limbs(), a.limbs());
(0..limbs).for_each(|i| {
izip!(
self.at(i).iter().step_by(gap_in),
a.at_mut(i).iter_mut().step_by(gap_out)
)
.for_each(|(x_in, x_out)| *x_out = *x_in);
});
}
pub fn print_limbs(&self, limbs: usize, n: usize) {
(0..limbs).for_each(|i| println!("{}: {:?}", i, &self.at(i)[..n]))
}
}
pub trait VecZnxOps {
/// Allocates a new [VecZnx].
///
/// # Arguments
///
/// * `limbs`: the number of limbs.
fn new_vec_znx(&self, limbs: usize) -> VecZnx;
/// Returns the minimum number of bytes necessary to allocate
/// a new [VecZnx] through [VecZnx::from_bytes].
fn bytes_of_vec_znx(&self, limbs: usize) -> usize;
/// c <- a + b.
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- b + a.
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// c <- a - b.
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- b - a.
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -a.
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -b.
fn vec_znx_negate_inplace(&self, a: &mut VecZnx);
/// b <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx);
/// b <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx);
/// Splits b into subrings and copies them them into a.
///
/// # Panics
///
/// This method requires that all [VecZnx] of b have the same ring degree
/// and that b.n() * b.len() <= a.n()
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx);
/// Merges the subrings a into b.
///
/// # Panics
///
/// This method requires that all [VecZnx] of a have the same ring degree
/// and that a.n() * a.len() <= b.n()
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>);
}
impl VecZnxOps for Module {
fn new_vec_znx(&self, limbs: usize) -> VecZnx {
VecZnx::new(self.n(), limbs)
}
fn bytes_of_vec_znx(&self, limbs: usize) -> usize {
self.n() * limbs * 8
}
// c <- a + b
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_add(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// b <- a + b
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_add(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// c <- a + b
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_sub(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// b <- a + b
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_sub(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_negate(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_negate_inplace(&self, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_negate(
self.0,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_rotate(&self, k: i64, a: &mut VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx) {
let (n_in, n_out) = (a.n(), b[0].n());
assert!(
n_out < n_in,
"invalid a: output ring degree should be smaller"
);
b[1..].iter().for_each(|bi| {
assert_eq!(
bi.n(),
n_out,
"invalid input a: all VecZnx must have the same degree"
)
});
b.iter_mut().enumerate().for_each(|(i, bi)| {
if i == 0 {
a.switch_degree(bi);
self.vec_znx_rotate(-1, buf, a);
} else {
buf.switch_degree(bi);
self.vec_znx_rotate_inplace(-1, buf);
}
})
}
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>) {
let (n_in, n_out) = (b.n(), a[0].n());
assert!(
n_out < n_in,
"invalid a: output ring degree should be smaller"
);
a[1..].iter().for_each(|ai| {
assert_eq!(
ai.n(),
n_out,
"invalid input a: all VecZnx must have the same degree"
)
});
a.iter().enumerate().for_each(|(_, ai)| {
ai.switch_degree(b);
self.vec_znx_rotate_inplace(-1, b);
});
self.vec_znx_rotate_inplace(a.len() as i64, b);
}
}