mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 13:16:44 +01:00
132 lines
4.1 KiB
Rust
132 lines
4.1 KiB
Rust
use base2k::{
|
|
Encoding, FFT64, Module, Sampling, Scalar, ScalarZnxDft, ScalarZnxDftOps, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft,
|
|
VecZnxDftOps, VecZnxOps, ZnxInfos, alloc_aligned,
|
|
};
|
|
use itertools::izip;
|
|
use sampling::source::Source;
|
|
|
|
fn main() {
|
|
let n: usize = 16;
|
|
let log_base2k: usize = 18;
|
|
let ct_size: usize = 3;
|
|
let msg_size: usize = 2;
|
|
let log_scale: usize = msg_size * log_base2k - 5;
|
|
let module: Module<FFT64> = Module::<FFT64>::new(n);
|
|
|
|
let mut carry: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes());
|
|
|
|
let seed: [u8; 32] = [0; 32];
|
|
let mut source: Source = Source::new(seed);
|
|
|
|
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
|
|
let mut s: Scalar = Scalar::new(n);
|
|
s.fill_ternary_prob(0.5, &mut source);
|
|
|
|
// Buffer to store s in the DFT domain
|
|
let mut s_ppol: ScalarZnxDft<FFT64> = module.new_svp_ppol();
|
|
|
|
// s_ppol <- DFT(s)
|
|
module.svp_prepare(&mut s_ppol, &s);
|
|
|
|
// Allocates a VecZnx with two columns: ct=(0, 0)
|
|
let mut ct: VecZnx = module.new_vec_znx(
|
|
2, // Number of columns
|
|
ct_size, // Number of small poly per column
|
|
);
|
|
|
|
// Fill the second column with random values: ct = (0, a)
|
|
module.fill_uniform(log_base2k, &mut ct, 1, ct_size, &mut source);
|
|
|
|
// Scratch space for DFT values
|
|
let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(
|
|
1, // Number of columns
|
|
ct.size(), // Number of polynomials per column
|
|
);
|
|
|
|
// Applies DFT(ct[1]) * DFT(s)
|
|
module.svp_apply_dft(
|
|
&mut buf_dft, // DFT(ct[1] * s)
|
|
&s_ppol, // DFT(s)
|
|
&ct,
|
|
1, // Selects the second column of ct
|
|
);
|
|
|
|
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
|
|
let mut buf_big: VecZnxBig<FFT64> = buf_dft.as_vec_znx_big();
|
|
|
|
// BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
|
|
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
|
|
|
|
// Creates a plaintext: VecZnx with 1 column
|
|
let mut m: VecZnx = module.new_vec_znx(
|
|
1, // Number of columns
|
|
msg_size, // Number of small polynomials
|
|
);
|
|
let mut want: Vec<i64> = vec![0; n];
|
|
want.iter_mut()
|
|
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
|
|
m.encode_vec_i64(0, log_base2k, log_scale, &want, 4);
|
|
m.normalize(log_base2k, &mut carry);
|
|
|
|
// m - BIG(ct[1] * s)
|
|
module.vec_znx_big_sub_small_a_inplace(
|
|
&mut buf_big,
|
|
0, // Selects the first column of the receiver
|
|
&m,
|
|
0, // Selects the first column of the message
|
|
);
|
|
|
|
// Normalizes back to VecZnx
|
|
// ct[0] <- m - BIG(c1 * s)
|
|
module.vec_znx_big_normalize(
|
|
log_base2k, &mut ct, 0, // Selects the first column of ct (ct[0])
|
|
&buf_big, 0, // Selects the first column of buf_big
|
|
&mut carry,
|
|
);
|
|
|
|
// Add noise to ct[0]
|
|
// ct[0] <- ct[0] + e
|
|
module.add_normal(
|
|
log_base2k,
|
|
&mut ct,
|
|
0, // Selects the first column of ct (ct[0])
|
|
log_base2k * ct_size, // Scaling of the noise: 2^{-log_base2k * limbs}
|
|
&mut source,
|
|
3.2, // Standard deviation
|
|
19.0, // Truncatation bound
|
|
);
|
|
|
|
// Final ciphertext: ct = (-a * s + m + e, a)
|
|
|
|
// Decryption
|
|
|
|
// DFT(ct[1] * s)
|
|
module.svp_apply_dft(
|
|
&mut buf_dft,
|
|
&s_ppol,
|
|
&ct,
|
|
1, // Selects the second column of ct (ct[1])
|
|
);
|
|
|
|
// BIG(c1 * s) = IDFT(DFT(c1 * s))
|
|
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
|
|
|
|
// BIG(c1 * s) + ct[0]
|
|
module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
|
|
|
|
// m + e <- BIG(ct[1] * s + ct[0])
|
|
let mut res: VecZnx = module.new_vec_znx(1, ct_size);
|
|
module.vec_znx_big_normalize(log_base2k, &mut res, 0, &buf_big, 0, &mut carry);
|
|
|
|
// have = m * 2^{log_scale} + e
|
|
let mut have: Vec<i64> = vec![i64::default(); n];
|
|
res.decode_vec_i64(0, log_base2k, res.size() * log_base2k, &mut have);
|
|
|
|
let scale: f64 = (1 << (res.size() * log_base2k - log_scale)) as f64;
|
|
izip!(want.iter(), have.iter())
|
|
.enumerate()
|
|
.for_each(|(i, (a, b))| {
|
|
println!("{}: {} {}", i, a, (*b as f64) / scale);
|
|
})
|
|
}
|