Files
poulpy/core/src/test_fft64/rlwe_dft.rs
Jean-Philippe Bossuat 31b14ee585 rework for GLWE
2025-05-13 09:56:55 +02:00

445 lines
14 KiB
Rust

use crate::{
elem::Infos,
encryption::EncryptSkScratchSpace,
external_product::{
ExternalProduct, ExternalProductInplace, ExternalProductInplaceScratchSpace, ExternalProductScratchSpace,
},
ggsw::GGSWCiphertext,
glwe::{GLWECiphertext, GLWECiphertextFourier, GLWEPlaintext},
keys::{SecretKey, SecretKeyFourier},
keyswitch::{KeySwitch, KeySwitchInplace, KeySwitchInplaceScratchSpace, KeySwitchScratchSpace},
keyswitch_key::GLWEKeySwitchKey,
test_fft64::{grlwe::noise_grlwe_rlwe_product, rgsw::noise_rgsw_product},
};
use base2k::{FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, VecZnxToMut, ZnxViewMut};
use sampling::source::Source;
#[test]
fn keyswitch() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GLWEKeySwitchKey<Vec<u8>, FFT64> = GLWEKeySwitchKey::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_in_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_out_dft: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEKeySwitchKey::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| GLWECiphertextFourier::keyswitch_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
&pt_want,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_in_dft);
ct_rlwe_out_dft.keyswitch(&module, &ct_rlwe_in_dft, &ct_grlwe, scratch.borrow());
ct_rlwe_out_dft.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
#[test]
fn keyswich_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe: usize = 45;
let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GLWEKeySwitchKey<Vec<u8>, FFT64> = GLWEKeySwitchKey::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe);
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEKeySwitchKey::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GLWECiphertextFourier::keyswitch_inplace_scratch_space(&module, ct_rlwe_dft.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
&pt_want,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
#[test]
fn external_product() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_dft_in: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft_out: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| GLWECiphertext::external_product_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_rgsw.size(),
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_dft_in);
ct_rlwe_dft_out.external_product(&module, &ct_rlwe_dft_in, &ct_rgsw, scratch.borrow());
ct_rlwe_dft_out.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
#[test]
fn external_product_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_rgsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
pt_want.to_mut().at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, ct_rgsw.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::external_product_inplace_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::new(&module);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.external_product_inplace(&module, &ct_rgsw, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_rgsw_product(
module.n() as f64,
log_base2k,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}