Files
poulpy/base2k/src/vec_znx.rs
2025-04-26 12:34:42 +02:00

731 lines
20 KiB
Rust

use crate::Backend;
use crate::cast_mut;
use crate::ffi::vec_znx;
use crate::ffi::znx;
use crate::{Infos, Module, VecZnxLayout};
use crate::{alloc_aligned, assert_alignement};
use itertools::izip;
use std::cmp::min;
/// [VecZnx] represents collection of contiguously stacked vector of small norm polynomials of
/// Zn\[X\] with [i64] coefficients.
/// A [VecZnx] is composed of multiple Zn\[X\] polynomials stored in a single contiguous array
/// in the memory.
///
/// # Example
///
/// Given 3 polynomials (a, b, c) of Zn\[X\], each with 4 columns, then the memory
/// layout is: `[a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3]`, where ai, bi, ci
/// are small polynomials of Zn\[X\].
#[derive(Clone)]
pub struct VecZnx {
/// Polynomial degree.
pub n: usize,
/// The number of polynomials
pub cols: usize,
/// The number of limbs per polynomial (a.k.a small polynomials).
pub limbs: usize,
/// Polynomial coefficients, as a contiguous array. Each col is equally spaced by n.
pub data: Vec<i64>,
/// Pointer to data (data can be enpty if [VecZnx] borrows space instead of owning it).
pub ptr: *mut i64,
}
impl Infos for VecZnx {
fn n(&self) -> usize {
self.n
}
fn log_n(&self) -> usize {
(usize::BITS - (self.n() - 1).leading_zeros()) as _
}
fn rows(&self) -> usize {
1
}
fn cols(&self) -> usize {
self.cols
}
fn limbs(&self) -> usize {
self.limbs
}
fn poly_count(&self) -> usize {
self.cols * self.limbs
}
}
impl VecZnxLayout for VecZnx {
type Scalar = i64;
fn as_ptr(&self) -> *const Self::Scalar {
self.ptr
}
fn as_mut_ptr(&mut self) -> *mut Self::Scalar {
self.ptr
}
}
/// Copies the coefficients of `a` on the receiver.
/// Copy is done with the minimum size matching both backing arrays.
/// Panics if the cols do not match.
pub fn copy_vec_znx_from(b: &mut VecZnx, a: &VecZnx) {
assert_eq!(b.cols(), a.cols());
let data_a: &[i64] = a.raw();
let data_b: &mut [i64] = b.raw_mut();
let size = min(data_b.len(), data_a.len());
data_b[..size].copy_from_slice(&data_a[..size])
}
impl VecZnx {
/// Allocates a new [VecZnx] composed of #size polynomials of Z\[X\].
pub fn new(n: usize, cols: usize, limbs: usize) -> Self {
#[cfg(debug_assertions)]
{
assert!(n > 0);
assert!(n & (n - 1) == 0);
assert!(cols > 0);
assert!(limbs > 0);
}
let mut data: Vec<i64> = alloc_aligned::<i64>(n * cols * limbs);
let ptr: *mut i64 = data.as_mut_ptr();
Self {
n: n,
cols: cols,
limbs: limbs,
data: data,
ptr: ptr,
}
}
/// Truncates the precision of the [VecZnx] by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the number of bits of precision to drop.
pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
if k == 0 {
return;
}
if !self.borrowing() {
self.data
.truncate(self.n() * self.cols() * (self.limbs() - k / log_base2k));
}
self.limbs -= k / log_base2k;
let k_rem: usize = k % log_base2k;
if k_rem != 0 {
let mask: i64 = ((1 << (log_base2k - k_rem - 1)) - 1) << k_rem;
self.at_limb_mut(self.limbs() - 1)
.iter_mut()
.for_each(|x: &mut i64| *x &= mask)
}
}
fn bytes_of(n: usize, cols: usize, limbs: usize) -> usize {
n * cols * limbs * size_of::<i64>()
}
/// Returns a new struct implementing [VecZnx] with the provided data as backing array.
///
/// The struct will take ownership of buf[..[Self::bytes_of]]
///
/// User must ensure that data is properly alligned and that
/// the limbs of data is equal to [Self::bytes_of].
pub fn from_bytes(n: usize, cols: usize, limbs: usize, bytes: &mut [u8]) -> Self {
#[cfg(debug_assertions)]
{
assert!(cols > 0);
assert!(limbs > 0);
assert_eq!(bytes.len(), Self::bytes_of(n, cols, limbs));
assert_alignement(bytes.as_ptr());
}
unsafe {
let bytes_i64: &mut [i64] = cast_mut::<u8, i64>(bytes);
let ptr: *mut i64 = bytes_i64.as_mut_ptr();
Self {
n: n,
cols: cols,
limbs: limbs,
data: Vec::from_raw_parts(ptr, bytes.len(), bytes.len()),
ptr: ptr,
}
}
}
pub fn from_bytes_borrow(n: usize, cols: usize, limbs: usize, bytes: &mut [u8]) -> Self {
#[cfg(debug_assertions)]
{
assert!(cols > 0);
assert!(limbs > 0);
assert!(bytes.len() >= Self::bytes_of(n, cols, limbs));
assert_alignement(bytes.as_ptr());
}
Self {
n: n,
cols: cols,
limbs: limbs,
data: Vec::new(),
ptr: bytes.as_mut_ptr() as *mut i64,
}
}
pub fn copy_from(&mut self, a: &Self) {
copy_vec_znx_from(self, a);
}
pub fn borrowing(&self) -> bool {
self.data.len() == 0
}
pub fn zero(&mut self) {
unsafe { znx::znx_zero_i64_ref((self.n * self.poly_count()) as u64, self.ptr) }
}
pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
normalize(log_base2k, self, carry)
}
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
rsh(log_base2k, self, k, carry)
}
pub fn switch_degree(&self, a: &mut Self) {
switch_degree(a, self)
}
// Prints the first `n` coefficients of each limb
pub fn print(&self, n: usize) {
(0..self.limbs()).for_each(|i| println!("{}: {:?}", i, &self.at_limb(i)[..n]))
}
}
pub fn switch_degree(b: &mut VecZnx, a: &VecZnx) {
let (n_in, n_out) = (a.n(), b.n());
let (gap_in, gap_out): (usize, usize);
if n_in > n_out {
(gap_in, gap_out) = (n_in / n_out, 1)
} else {
(gap_in, gap_out) = (1, n_out / n_in);
b.zero();
}
let limbs: usize = min(a.limbs(), b.limbs());
(0..limbs).for_each(|i| {
izip!(
a.at_limb(i).iter().step_by(gap_in),
b.at_limb_mut(i).iter_mut().step_by(gap_out)
)
.for_each(|(x_in, x_out)| *x_out = *x_in);
});
}
fn normalize_tmp_bytes(n: usize, limbs: usize) -> usize {
n * limbs * std::mem::size_of::<i64>()
}
fn normalize(log_base2k: usize, a: &mut VecZnx, tmp_bytes: &mut [u8]) {
let n: usize = a.n();
let cols: usize = a.cols();
debug_assert!(
tmp_bytes.len() >= normalize_tmp_bytes(n, cols),
"invalid tmp_bytes: tmp_bytes.len()={} < normalize_tmp_bytes({}, {})",
tmp_bytes.len(),
n,
cols,
);
#[cfg(debug_assertions)]
{
assert_alignement(tmp_bytes.as_ptr())
}
let carry_i64: &mut [i64] = cast_mut(tmp_bytes);
unsafe {
znx::znx_zero_i64_ref(n as u64, carry_i64.as_mut_ptr());
(0..a.limbs()).rev().for_each(|i| {
znx::znx_normalize(
(n * cols) as u64,
log_base2k as u64,
a.at_mut_ptr(0, i),
carry_i64.as_mut_ptr(),
a.at_mut_ptr(0, i),
carry_i64.as_mut_ptr(),
)
});
}
}
pub fn rsh_tmp_bytes(n: usize, limbs: usize) -> usize {
n * limbs * std::mem::size_of::<i64>()
}
pub fn rsh(log_base2k: usize, a: &mut VecZnx, k: usize, tmp_bytes: &mut [u8]) {
let n: usize = a.n();
let limbs: usize = a.limbs();
#[cfg(debug_assertions)]
{
assert!(
tmp_bytes.len() >= rsh_tmp_bytes(n, limbs),
"invalid carry: carry.len()/8={} < rsh_tmp_bytes({}, {})",
tmp_bytes.len() >> 3,
n,
limbs,
);
assert_alignement(tmp_bytes.as_ptr());
}
let limbs: usize = a.limbs();
let size_steps: usize = k / log_base2k;
a.raw_mut().rotate_right(n * limbs * size_steps);
unsafe {
znx::znx_zero_i64_ref((n * limbs * size_steps) as u64, a.as_mut_ptr());
}
let k_rem = k % log_base2k;
if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut(tmp_bytes);
unsafe {
znx::znx_zero_i64_ref((n * limbs) as u64, carry_i64.as_mut_ptr());
}
let log_base2k: usize = log_base2k;
(size_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), a.at_limb_mut(i).iter_mut()).for_each(|(ci, xi)| {
*xi += *ci << log_base2k;
*ci = get_base_k_carry(*xi, k_rem);
*xi = (*xi - *ci) >> k_rem;
});
})
}
}
#[inline(always)]
fn get_base_k_carry(x: i64, k: usize) -> i64 {
(x << 64 - k) >> (64 - k)
}
pub trait VecZnxOps {
/// Allocates a new [VecZnx].
///
/// # Arguments
///
/// * `cols`: the number of polynomials.
/// * `limbs`: the number of limbs per polynomial (a.k.a small polynomials).
fn new_vec_znx(&self, cols: usize, limbs: usize) -> VecZnx;
fn new_vec_znx_from_bytes(&self, cols: usize, limbs: usize, bytes: &mut [u8]) -> VecZnx;
fn new_vec_znx_from_bytes_borrow(&self, cols: usize, limbs: usize, tmp_bytes: &mut [u8]) -> VecZnx;
/// Returns the minimum number of bytes necessary to allocate
/// a new [VecZnx] through [VecZnx::from_bytes].
fn bytes_of_vec_znx(&self, cols: usize, size: usize) -> usize;
fn vec_znx_normalize_tmp_bytes(&self, cols: usize) -> usize;
/// c <- a + b.
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- b + a.
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// c <- a - b.
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- a - b.
fn vec_znx_sub_ab_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- b - a.
fn vec_znx_sub_ba_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -a.
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -b.
fn vec_znx_negate_inplace(&self, a: &mut VecZnx);
/// b <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx);
/// b <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx);
/// Splits b into subrings and copies them them into a.
///
/// # Panics
///
/// This method requires that all [VecZnx] of b have the same ring degree
/// and that b.n() * b.len() <= a.n()
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx);
/// Merges the subrings a into b.
///
/// # Panics
///
/// This method requires that all [VecZnx] of a have the same ring degree
/// and that a.n() * a.len() <= b.n()
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>);
}
impl<B: Backend> VecZnxOps for Module<B> {
fn new_vec_znx(&self, cols: usize, limbs: usize) -> VecZnx {
VecZnx::new(self.n(), cols, limbs)
}
fn bytes_of_vec_znx(&self, cols: usize, limbs: usize) -> usize {
VecZnx::bytes_of(self.n(), cols, limbs)
}
fn new_vec_znx_from_bytes(&self, cols: usize, limbs: usize, bytes: &mut [u8]) -> VecZnx {
VecZnx::from_bytes(self.n(), cols, limbs, bytes)
}
fn new_vec_znx_from_bytes_borrow(&self, cols: usize, limbs: usize, tmp_bytes: &mut [u8]) -> VecZnx {
VecZnx::from_bytes_borrow(self.n(), cols, limbs, tmp_bytes)
}
fn vec_znx_normalize_tmp_bytes(&self, cols: usize) -> usize {
unsafe { vec_znx::vec_znx_normalize_base2k_tmp_bytes(self.ptr) as usize * cols }
}
// c <- a + b
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(c.n(), n);
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_add(
self.ptr,
c.as_mut_ptr(),
c.limbs() as u64,
(n * c.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
b.as_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
)
}
}
// b <- a + b
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_add(
self.ptr,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
b.as_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
)
}
}
// c <- a + b
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(c.n(), n);
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
c.as_mut_ptr(),
c.limbs() as u64,
(n * c.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
b.as_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
)
}
}
// b <- a - b
fn vec_znx_sub_ab_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
b.as_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
)
}
}
// b <- b - a
fn vec_znx_sub_ba_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
b.as_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
)
}
}
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_negate(
self.ptr,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
)
}
}
fn vec_znx_negate_inplace(&self, a: &mut VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
}
unsafe {
vec_znx::vec_znx_negate(
self.ptr,
a.as_mut_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
)
}
}
fn vec_znx_rotate(&self, k: i64, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_rotate(
self.ptr,
k,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
)
}
}
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
}
unsafe {
vec_znx::vec_znx_rotate(
self.ptr,
k,
a.as_mut_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
)
}
}
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each size.
///
/// # Arguments
///
/// * `a`: input.
/// * `b`: output.
/// * `k`: the power to which to map each coefficients.
/// * `a_size`: the number of a_size on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `a` is greater than `a.limbs()`.
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
assert_eq!(b.n(), n);
}
unsafe {
vec_znx::vec_znx_automorphism(
self.ptr,
k,
b.as_mut_ptr(),
b.limbs() as u64,
(n * b.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
);
}
}
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each size.
///
/// # Arguments
///
/// * `a`: input and output.
/// * `k`: the power to which to map each coefficients.
/// * `a_size`: the number of size on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `size` is greater than `self.limbs()`.
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx) {
let n: usize = self.n();
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), n);
}
unsafe {
vec_znx::vec_znx_automorphism(
self.ptr,
k,
a.as_mut_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
a.as_ptr(),
a.limbs() as u64,
(n * a.cols()) as u64,
);
}
}
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx) {
let (n_in, n_out) = (a.n(), b[0].n());
debug_assert!(
n_out < n_in,
"invalid a: output ring degree should be smaller"
);
b[1..].iter().for_each(|bi| {
debug_assert_eq!(
bi.n(),
n_out,
"invalid input a: all VecZnx must have the same degree"
)
});
b.iter_mut().enumerate().for_each(|(i, bi)| {
if i == 0 {
switch_degree(bi, a);
self.vec_znx_rotate(-1, buf, a);
} else {
switch_degree(bi, buf);
self.vec_znx_rotate_inplace(-1, buf);
}
})
}
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>) {
let (n_in, n_out) = (b.n(), a[0].n());
debug_assert!(
n_out < n_in,
"invalid a: output ring degree should be smaller"
);
a[1..].iter().for_each(|ai| {
debug_assert_eq!(
ai.n(),
n_out,
"invalid input a: all VecZnx must have the same degree"
)
});
a.iter().enumerate().for_each(|(_, ai)| {
switch_degree(b, ai);
self.vec_znx_rotate_inplace(-1, b);
});
self.vec_znx_rotate_inplace(a.len() as i64, b);
}
}