Files
poulpy/poulpy-core/src/encryption/glwe.rs

561 lines
17 KiB
Rust

use poulpy_hal::{
api::{
ModuleN, ScratchAvailable, ScratchTakeBasic, SvpApplyDftToDft, SvpApplyDftToDftInplace, SvpPPolBytesOf, SvpPrepare,
VecZnxAddInplace, VecZnxAddNormal, VecZnxBigAddNormal, VecZnxBigAddSmallInplace, VecZnxBigBytesOf, VecZnxBigNormalize,
VecZnxDftApply, VecZnxDftBytesOf, VecZnxFillUniform, VecZnxIdftApplyConsume, VecZnxNormalize, VecZnxNormalizeInplace,
VecZnxNormalizeTmpBytes, VecZnxSub, VecZnxSubInplace,
},
layouts::{Backend, DataMut, Module, ScalarZnx, Scratch, VecZnx, VecZnxBig, VecZnxToMut, ZnxInfos, ZnxZero},
source::Source,
};
use crate::{
GetDistribution, ScratchTakeCore,
dist::Distribution,
encryption::{SIGMA, SIGMA_BOUND},
layouts::{
GLWE, GLWEInfos, GLWEPlaintext, GLWEPlaintextToRef, GLWEPrepared, GLWEPreparedToRef, GLWEToMut, LWEInfos,
prepared::{GLWESecretPrepared, GLWESecretPreparedToRef},
},
};
impl GLWE<Vec<u8>> {
pub fn encrypt_sk_tmp_bytes<M, A, BE: Backend>(module: &M, infos: &A) -> usize
where
A: GLWEInfos,
M: GLWEEncryptSk<BE>,
{
module.glwe_encrypt_sk_tmp_bytes(infos)
}
pub fn encrypt_pk_tmp_bytes<M, A, BE: Backend>(module: &M, infos: &A) -> usize
where
A: GLWEInfos,
M: GLWEEncryptPk<BE>,
{
module.glwe_encrypt_pk_tmp_bytes(infos)
}
}
impl<D: DataMut> GLWE<D> {
pub fn encrypt_sk<P, S, M, BE: Backend>(
&mut self,
module: &M,
pt: &P,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
P: GLWEPlaintextToRef,
S: GLWESecretPreparedToRef<BE>,
M: GLWEEncryptSk<BE>,
Scratch<BE>: ScratchTakeCore<BE>,
{
module.glwe_encrypt_sk(self, pt, sk, source_xa, source_xe, scratch);
}
pub fn encrypt_zero_sk<S, M, BE: Backend>(
&mut self,
module: &M,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
S: GLWESecretPreparedToRef<BE>,
M: GLWEEncryptSk<BE>,
Scratch<BE>: ScratchTakeCore<BE>,
{
module.glwe_encrypt_zero_sk(self, sk, source_xa, source_xe, scratch);
}
pub fn encrypt_pk<P, K, M, BE: Backend>(
&mut self,
module: &M,
pt: &P,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
P: GLWEPlaintextToRef + GLWEInfos,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos,
M: GLWEEncryptPk<BE>,
{
module.glwe_encrypt_pk(self, pt, pk, source_xu, source_xe, scratch);
}
pub fn encrypt_zero_pk<K, M, BE: Backend>(
&mut self,
module: &M,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos,
M: GLWEEncryptPk<BE>,
{
module.glwe_encrypt_zero_pk(self, pk, source_xu, source_xe, scratch);
}
}
pub trait GLWEEncryptSk<BE: Backend> {
fn glwe_encrypt_sk_tmp_bytes<A>(&self, infos: &A) -> usize
where
A: GLWEInfos;
fn glwe_encrypt_sk<R, P, S>(
&self,
res: &mut R,
pt: &P,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef,
S: GLWESecretPreparedToRef<BE>;
fn glwe_encrypt_zero_sk<R, S>(
&self,
res: &mut R,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
S: GLWESecretPreparedToRef<BE>;
}
impl<BE: Backend> GLWEEncryptSk<BE> for Module<BE>
where
Self: Sized + ModuleN + VecZnxNormalizeTmpBytes + VecZnxDftBytesOf + GLWEEncryptSkInternal<BE>,
Scratch<BE>: ScratchAvailable,
{
fn glwe_encrypt_sk_tmp_bytes<A>(&self, infos: &A) -> usize
where
A: GLWEInfos,
{
let size: usize = infos.size();
assert_eq!(self.n() as u32, infos.n());
self.vec_znx_normalize_tmp_bytes() + 2 * VecZnx::bytes_of(self.n(), 1, size) + self.bytes_of_vec_znx_dft(1, size)
}
fn glwe_encrypt_sk<R, P, S>(
&self,
res: &mut R,
pt: &P,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef,
S: GLWESecretPreparedToRef<BE>,
{
let res: &mut GLWE<&mut [u8]> = &mut res.to_mut();
let pt: &GLWEPlaintext<&[u8]> = &pt.to_ref();
let sk: &GLWESecretPrepared<&[u8], BE> = &sk.to_ref();
assert_eq!(res.rank(), sk.rank());
assert_eq!(res.n(), self.n() as u32);
assert_eq!(sk.n(), self.n() as u32);
assert_eq!(pt.n(), self.n() as u32);
assert!(
scratch.available() >= self.glwe_encrypt_sk_tmp_bytes(res),
"scratch.available(): {} < GLWE::encrypt_sk_tmp_bytes: {}",
scratch.available(),
self.glwe_encrypt_sk_tmp_bytes(res)
);
let cols: usize = (res.rank() + 1).into();
self.glwe_encrypt_sk_internal(
res.base2k().into(),
res.k().into(),
res.data_mut(),
cols,
false,
Some((pt, 0)),
sk,
source_xa,
source_xe,
SIGMA,
scratch,
);
}
fn glwe_encrypt_zero_sk<R, S>(
&self,
res: &mut R,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
S: GLWESecretPreparedToRef<BE>,
{
let res: &mut GLWE<&mut [u8]> = &mut res.to_mut();
let sk: &GLWESecretPrepared<&[u8], BE> = &sk.to_ref();
assert_eq!(res.rank(), sk.rank());
assert_eq!(res.n(), self.n() as u32);
assert_eq!(sk.n(), self.n() as u32);
assert!(
scratch.available() >= self.glwe_encrypt_sk_tmp_bytes(res),
"scratch.available(): {} < GLWE::encrypt_sk_tmp_bytes: {}",
scratch.available(),
self.glwe_encrypt_sk_tmp_bytes(res)
);
let cols: usize = (res.rank() + 1).into();
self.glwe_encrypt_sk_internal(
res.base2k().into(),
res.k().into(),
res.data_mut(),
cols,
false,
None::<(&GLWEPlaintext<Vec<u8>>, usize)>,
sk,
source_xa,
source_xe,
SIGMA,
scratch,
);
}
}
pub trait GLWEEncryptPk<BE: Backend> {
fn glwe_encrypt_pk_tmp_bytes<A>(&self, infos: &A) -> usize
where
A: GLWEInfos;
fn glwe_encrypt_pk<R, P, K>(
&self,
res: &mut R,
pt: &P,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef + GLWEInfos,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos;
fn glwe_encrypt_zero_pk<R, K>(
&self,
res: &mut R,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos;
}
impl<BE: Backend> GLWEEncryptPk<BE> for Module<BE>
where
Self: GLWEEncryptPkInternal<BE> + VecZnxDftBytesOf + SvpPPolBytesOf + VecZnxBigBytesOf + VecZnxNormalizeTmpBytes,
{
fn glwe_encrypt_pk_tmp_bytes<A>(&self, infos: &A) -> usize
where
A: GLWEInfos,
{
let size: usize = infos.size();
assert_eq!(self.n() as u32, infos.n());
((self.bytes_of_vec_znx_dft(1, size) + self.bytes_of_vec_znx_big(1, size)).max(ScalarZnx::bytes_of(self.n(), 1)))
+ self.bytes_of_svp_ppol(1)
+ self.vec_znx_normalize_tmp_bytes()
}
fn glwe_encrypt_pk<R, P, K>(
&self,
res: &mut R,
pt: &P,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef + GLWEInfos,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos,
{
self.glwe_encrypt_pk_internal(res, Some((pt, 0)), pk, source_xu, source_xe, scratch);
}
fn glwe_encrypt_zero_pk<R, K>(
&self,
res: &mut R,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos,
{
self.glwe_encrypt_pk_internal(
res,
None::<(&GLWEPlaintext<Vec<u8>>, usize)>,
pk,
source_xu,
source_xe,
scratch,
);
}
}
pub(crate) trait GLWEEncryptPkInternal<BE: Backend> {
fn glwe_encrypt_pk_internal<R, P, K>(
&self,
res: &mut R,
pt: Option<(&P, usize)>,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef + GLWEInfos,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos;
}
impl<BE: Backend> GLWEEncryptPkInternal<BE> for Module<BE>
where
Self: SvpPrepare<BE>
+ SvpApplyDftToDft<BE>
+ VecZnxIdftApplyConsume<BE>
+ VecZnxBigAddNormal<BE>
+ VecZnxBigAddSmallInplace<BE>
+ VecZnxBigNormalize<BE>
+ SvpPPolBytesOf
+ ModuleN
+ VecZnxDftBytesOf,
Scratch<BE>: ScratchTakeBasic,
{
fn glwe_encrypt_pk_internal<R, P, K>(
&self,
res: &mut R,
pt: Option<(&P, usize)>,
pk: &K,
source_xu: &mut Source,
source_xe: &mut Source,
scratch: &mut Scratch<BE>,
) where
R: GLWEToMut,
P: GLWEPlaintextToRef + GLWEInfos,
K: GLWEPreparedToRef<BE> + GetDistribution + GLWEInfos,
{
let res: &mut GLWE<&mut [u8]> = &mut res.to_mut();
assert_eq!(res.base2k(), pk.base2k());
assert_eq!(res.n(), pk.n());
assert_eq!(res.rank(), pk.rank());
if let Some((pt, _)) = pt {
assert_eq!(pt.base2k(), pk.base2k());
assert_eq!(pt.n(), pk.n());
}
let base2k: usize = pk.base2k().into();
let size_pk: usize = pk.size();
let cols: usize = (res.rank() + 1).into();
// Generates u according to the underlying secret distribution.
let (mut u_dft, scratch_1) = scratch.take_svp_ppol(self, 1);
{
let (mut u, _) = scratch_1.take_scalar_znx(self.n(), 1);
match pk.dist() {
Distribution::NONE => panic!(
"invalid public key: SecretDistribution::NONE, ensure it has been correctly intialized through \
Self::generate"
),
Distribution::TernaryFixed(hw) => u.fill_ternary_hw(0, *hw, source_xu),
Distribution::TernaryProb(prob) => u.fill_ternary_prob(0, *prob, source_xu),
Distribution::BinaryFixed(hw) => u.fill_binary_hw(0, *hw, source_xu),
Distribution::BinaryProb(prob) => u.fill_binary_prob(0, *prob, source_xu),
Distribution::BinaryBlock(block_size) => u.fill_binary_block(0, *block_size, source_xu),
Distribution::ZERO => {}
}
self.svp_prepare(&mut u_dft, 0, &u, 0);
}
{
let pk: &GLWEPrepared<&[u8], BE> = &pk.to_ref();
// ct[i] = pk[i] * u + ei (+ m if col = i)
for i in 0..cols {
let (mut ci_dft, scratch_2) = scratch_1.take_vec_znx_dft(self, 1, size_pk);
// ci_dft = DFT(u) * DFT(pk[i])
self.svp_apply_dft_to_dft(&mut ci_dft, 0, &u_dft, 0, &pk.data, i);
// ci_big = u * p[i]
let mut ci_big = self.vec_znx_idft_apply_consume(ci_dft);
// ci_big = u * pk[i] + e
self.vec_znx_big_add_normal(
base2k,
&mut ci_big,
0,
pk.k().into(),
source_xe,
SIGMA,
SIGMA_BOUND,
);
// ci_big = u * pk[i] + e + m (if col = i)
if let Some((pt, col)) = pt
&& col == i
{
self.vec_znx_big_add_small_inplace(&mut ci_big, 0, &pt.to_ref().data, 0);
}
// ct[i] = norm(ci_big)
self.vec_znx_big_normalize(base2k, &mut res.data, i, base2k, &ci_big, 0, scratch_2);
}
}
}
}
pub(crate) trait GLWEEncryptSkInternal<BE: Backend> {
#[allow(clippy::too_many_arguments)]
fn glwe_encrypt_sk_internal<R, P, S>(
&self,
base2k: usize,
k: usize,
res: &mut R,
cols: usize,
compressed: bool,
pt: Option<(&P, usize)>,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
sigma: f64,
scratch: &mut Scratch<BE>,
) where
R: VecZnxToMut,
P: GLWEPlaintextToRef,
S: GLWESecretPreparedToRef<BE>;
}
impl<BE: Backend> GLWEEncryptSkInternal<BE> for Module<BE>
where
Self: ModuleN
+ VecZnxDftBytesOf
+ VecZnxBigNormalize<BE>
+ VecZnxDftApply<BE>
+ SvpApplyDftToDftInplace<BE>
+ VecZnxIdftApplyConsume<BE>
+ VecZnxNormalizeTmpBytes
+ VecZnxFillUniform
+ VecZnxSubInplace
+ VecZnxAddInplace
+ VecZnxNormalizeInplace<BE>
+ VecZnxAddNormal
+ VecZnxNormalize<BE>
+ VecZnxSub,
Scratch<BE>: ScratchTakeBasic,
{
fn glwe_encrypt_sk_internal<R, P, S>(
&self,
base2k: usize,
k: usize,
res: &mut R,
cols: usize,
compressed: bool,
pt: Option<(&P, usize)>,
sk: &S,
source_xa: &mut Source,
source_xe: &mut Source,
sigma: f64,
scratch: &mut Scratch<BE>,
) where
R: VecZnxToMut,
P: GLWEPlaintextToRef,
S: GLWESecretPreparedToRef<BE>,
{
let ct: &mut VecZnx<&mut [u8]> = &mut res.to_mut();
let sk: GLWESecretPrepared<&[u8], BE> = sk.to_ref();
if compressed {
assert_eq!(
ct.cols(),
1,
"invalid glwe: compressed tag=true but #cols={} != 1",
ct.cols()
)
}
assert!(
sk.dist != Distribution::NONE,
"glwe secret distribution is NONE (have you prepared the key?)"
);
let size: usize = ct.size();
let (mut c0, scratch_1) = scratch.take_vec_znx(self.n(), 1, size);
c0.zero();
{
let (mut ci, scratch_2) = scratch_1.take_vec_znx(self.n(), 1, size);
// ct[i] = uniform
// ct[0] -= c[i] * s[i],
(1..cols).for_each(|i| {
let col_ct: usize = if compressed { 0 } else { i };
// ct[i] = uniform (+ pt)
self.vec_znx_fill_uniform(base2k, ct, col_ct, source_xa);
let (mut ci_dft, scratch_3) = scratch_2.take_vec_znx_dft(self, 1, size);
// ci = ct[i] - pt
// i.e. we act as we sample ct[i] already as uniform + pt
// and if there is a pt, then we subtract it before applying DFT
if let Some((pt, col)) = pt {
if i == col {
self.vec_znx_sub(&mut ci, 0, ct, col_ct, &pt.to_ref().data, 0);
self.vec_znx_normalize_inplace(base2k, &mut ci, 0, scratch_3);
self.vec_znx_dft_apply(1, 0, &mut ci_dft, 0, &ci, 0);
} else {
self.vec_znx_dft_apply(1, 0, &mut ci_dft, 0, ct, col_ct);
}
} else {
self.vec_znx_dft_apply(1, 0, &mut ci_dft, 0, ct, col_ct);
}
self.svp_apply_dft_to_dft_inplace(&mut ci_dft, 0, &sk.data, i - 1);
let ci_big: VecZnxBig<&mut [u8], BE> = self.vec_znx_idft_apply_consume(ci_dft);
// use c[0] as buffer, which is overwritten later by the normalization step
self.vec_znx_big_normalize(base2k, &mut ci, 0, base2k, &ci_big, 0, scratch_3);
// c0_tmp = -c[i] * s[i] (use c[0] as buffer)
self.vec_znx_sub_inplace(&mut c0, 0, &ci, 0);
});
}
// c[0] += e
self.vec_znx_add_normal(base2k, &mut c0, 0, k, source_xe, sigma, SIGMA_BOUND);
// c[0] += m if col = 0
if let Some((pt, col)) = pt
&& col == 0
{
self.vec_znx_add_inplace(&mut c0, 0, &pt.to_ref().data, 0);
}
// c[0] = norm(c[0])
self.vec_znx_normalize(base2k, ct, 0, base2k, &c0, 0, scratch_1);
}
}