Files
poulpy/backend/examples/rlwe_encrypt.rs

144 lines
4.9 KiB
Rust

use backend::{
hal::{
api::{
ModuleNew, ScratchOwnedAlloc, ScratchOwnedBorrow, SvpApplyInplace, SvpPPolAlloc, SvpPrepare, VecZnxAddNormal,
VecZnxBigAddSmallInplace, VecZnxBigAlloc, VecZnxBigNormalize, VecZnxBigNormalizeTmpBytes, VecZnxBigSubSmallBInplace,
VecZnxDecodeVeci64, VecZnxDftAlloc, VecZnxDftFromVecZnx, VecZnxDftToVecZnxBigTmpA, VecZnxEncodeVeci64,
VecZnxFillUniform, VecZnxNormalizeInplace, ZnxInfos,
},
layouts::{Module, ScalarZnx, ScratchOwned, SvpPPol, VecZnx, VecZnxBig, VecZnxDft},
},
implementation::cpu_spqlios::FFT64,
};
use itertools::izip;
use sampling::source::Source;
fn main() {
let n: usize = 16;
let basek: usize = 18;
let ct_size: usize = 3;
let msg_size: usize = 2;
let log_scale: usize = msg_size * basek - 5;
let module: Module<FFT64> = Module::<FFT64>::new(n as u64);
let mut scratch: ScratchOwned<FFT64> = ScratchOwned::<FFT64>::alloc(module.vec_znx_big_normalize_tmp_bytes(n));
let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed);
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
let mut s: ScalarZnx<Vec<u8>> = ScalarZnx::alloc(module.n(), 1);
s.fill_ternary_prob(0, 0.5, &mut source);
// Buffer to store s in the DFT domain
let mut s_dft: SvpPPol<Vec<u8>, FFT64> = module.svp_ppol_alloc(n, s.cols());
// s_dft <- DFT(s)
module.svp_prepare(&mut s_dft, 0, &s, 0);
// Allocates a VecZnx with two columns: ct=(0, 0)
let mut ct: VecZnx<Vec<u8>> = VecZnx::alloc(
module.n(),
2, // Number of columns
ct_size, // Number of small poly per column
);
// Fill the second column with random values: ct = (0, a)
module.vec_znx_fill_uniform(basek, &mut ct, 1, ct_size * basek, &mut source);
let mut buf_dft: VecZnxDft<Vec<u8>, FFT64> = module.vec_znx_dft_alloc(n, 1, ct_size);
module.vec_znx_dft_from_vec_znx(1, 0, &mut buf_dft, 0, &ct, 1);
// Applies DFT(ct[1]) * DFT(s)
module.svp_apply_inplace(
&mut buf_dft, // DFT(ct[1] * s)
0, // Selects the first column of res
&s_dft, // DFT(s)
0, // Selects the first column of s_dft
);
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
// BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
let mut buf_big: VecZnxBig<Vec<u8>, FFT64> = module.vec_znx_big_alloc(n, 1, ct_size);
module.vec_znx_dft_to_vec_znx_big_tmp_a(&mut buf_big, 0, &mut buf_dft, 0);
// Creates a plaintext: VecZnx with 1 column
let mut m = VecZnx::alloc(
module.n(),
1, // Number of columns
msg_size, // Number of small polynomials
);
let mut want: Vec<i64> = vec![0; n];
want.iter_mut()
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
module.encode_vec_i64(basek, &mut m, 0, log_scale, &want, 4);
module.vec_znx_normalize_inplace(basek, &mut m, 0, scratch.borrow());
// m - BIG(ct[1] * s)
module.vec_znx_big_sub_small_b_inplace(
&mut buf_big,
0, // Selects the first column of the receiver
&m,
0, // Selects the first column of the message
);
// Normalizes back to VecZnx
// ct[0] <- m - BIG(c1 * s)
module.vec_znx_big_normalize(
basek,
&mut ct,
0, // Selects the first column of ct (ct[0])
&buf_big,
0, // Selects the first column of buf_big
scratch.borrow(),
);
// Add noise to ct[0]
// ct[0] <- ct[0] + e
module.vec_znx_add_normal(
basek,
&mut ct,
0, // Selects the first column of ct (ct[0])
basek * ct_size, // Scaling of the noise: 2^{-basek * limbs}
&mut source,
3.2, // Standard deviation
3.2 * 6.0, // Truncatation bound
);
// Final ciphertext: ct = (-a * s + m + e, a)
// Decryption
// DFT(ct[1] * s)
module.vec_znx_dft_from_vec_znx(1, 0, &mut buf_dft, 0, &ct, 1);
module.svp_apply_inplace(
&mut buf_dft,
0, // Selects the first column of res.
&s_dft,
0,
);
// BIG(c1 * s) = IDFT(DFT(c1 * s))
module.vec_znx_dft_to_vec_znx_big_tmp_a(&mut buf_big, 0, &mut buf_dft, 0);
// BIG(c1 * s) + ct[0]
module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
// m + e <- BIG(ct[1] * s + ct[0])
let mut res = VecZnx::alloc(module.n(), 1, ct_size);
module.vec_znx_big_normalize(basek, &mut res, 0, &buf_big, 0, scratch.borrow());
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];
module.decode_vec_i64(basek, &mut res, 0, ct_size * basek, &mut have);
let scale: f64 = (1 << (res.size() * basek - log_scale)) as f64;
izip!(want.iter(), have.iter())
.enumerate()
.for_each(|(i, (a, b))| {
println!("{}: {} {}", i, a, (*b as f64) / scale);
});
}