Files
poulpy/base2k/src/mat_znx_dft_ops.rs

705 lines
24 KiB
Rust

use crate::ffi::vec_znx_dft::vec_znx_dft_t;
use crate::ffi::vmp;
use crate::znx_base::{ZnxInfos, ZnxView, ZnxViewMut};
use crate::{
Backend, FFT64, MatZnxDft, MatZnxDftAllocOwned, Module, Scratch, VecZnx, VecZnxBigOps, VecZnxBigScratch, VecZnxDft,
VecZnxDftAlloc, VecZnxDftOps,
};
pub trait MatZnxDftAlloc<B> {
/// Allocates a new [MatZnxDft] with the given number of rows and columns.
///
/// # Arguments
///
/// * `rows`: number of rows (number of [VecZnxDft]).
/// * `size`: number of size (number of size of each [VecZnxDft]).
fn new_mat_znx_dft(&self, rows: usize, cols_in: usize, cols_out: usize, size: usize) -> MatZnxDftAllocOwned<B>;
fn bytes_of_mat_znx_dft(&self, rows: usize, cols_in: usize, cols_out: usize, size: usize) -> usize;
fn new_mat_znx_dft_from_bytes(
&self,
rows: usize,
cols_in: usize,
cols_out: usize,
size: usize,
bytes: Vec<u8>,
) -> MatZnxDftAllocOwned<B>;
}
pub trait MatZnxDftScratch {
/// Returns the of bytes needed as scratch space for [MatZnxDftOps::vmp_prepare_row]
fn vmp_prepare_row_tmp_bytes(&self, cols_out: usize, size: usize) -> usize;
/// Returns the of bytes needed as scratch space for [MatZnxDftOps::vmp_extract_row]
fn vmp_extract_row_tmp_bytes(&self, cols_out: usize, size: usize) -> usize;
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft].
///
/// # Arguments
///
/// * `c_size`: number of size of the output [VecZnxDft].
/// * `a_size`: number of size of the input [VecZnx].
/// * `rows`: number of rows of the input [MatZnxDft].
/// * `size`: number of size of the input [MatZnxDft].
fn vmp_apply_dft_tmp_bytes(
&self,
c_size: usize,
a_size: usize,
b_rows: usize,
b_cols_in: usize,
b_cols_out: usize,
b_size: usize,
) -> usize;
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft_to_dft].
///
/// # Arguments
///
/// * `c_size`: number of size of the output [VecZnxDft].
/// * `a_size`: number of size of the input [VecZnxDft].
/// * `rows`: number of rows of the input [MatZnxDft].
/// * `size`: number of size of the input [MatZnxDft].
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_cols: usize,
c_size: usize,
a_cols: usize,
a_size: usize,
b_rows: usize,
b_cols_in: usize,
b_cols_out: usize,
b_size: usize,
) -> usize;
}
/// This trait implements methods for vector matrix product,
/// that is, multiplying a [VecZnx] with a [MatZnxDft].
pub trait MatZnxDftOps<DataMut, Data, B: Backend> {
/// Prepares the ith-row of [MatZnxDft] from a [VecZnx].
///
/// # Arguments
///
/// * `b`: [MatZnxDft] on which the values are encoded.
/// * `row_i`: the row of the [MatZnxDft] to prepare.
/// * `a`: the [VecZnx] to encode on the i-th row of the [MatZnxDft].
/// * `buf`: scratch space, the size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
///
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
fn vmp_prepare_row(
&self,
b: &mut MatZnxDft<DataMut, B>,
b_row: usize,
b_col_in: usize,
a: &VecZnx<Data>,
scratch: &mut Scratch,
);
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxBig].
///
/// # Arguments
///
/// * `b`: the [VecZnxBig] to on which to extract the row of the [MatZnxDft].
/// * `a`: [MatZnxDft] on which the values are encoded.
/// * `row_i`: the index of the row to extract.
fn vmp_extract_row(
&self,
log_base2k: usize,
b: &mut VecZnx<DataMut>,
a: &MatZnxDft<Data, B>,
b_row: usize,
b_col_in: usize,
scratch: &mut Scratch,
);
/// Prepares the ith-row of [MatZnxDft] from a [VecZnxDft].
///
/// # Arguments
///
/// * `b`: [MatZnxDft] on which the values are encoded.
/// * `a`: the [VecZnxDft] to encode on the [MatZnxDft].
/// * `row_i`: the index of the row to prepare.
///
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<DataMut, B>, b_row: usize, b_col_in: usize, a: &VecZnxDft<Data, B>);
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxDft].
///
/// # Arguments
///
/// * `b`: the [VecZnxDft] to on which to extract the row of the [MatZnxDft].
/// * `a`: [MatZnxDft] on which the values are encoded.
/// * `row_i`: the index of the row to extract.
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<DataMut, B>, a: &MatZnxDft<Data, B>, a_row: usize, a_col_in: usize);
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
///
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
///
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
/// `j` size, the output is a [VecZnx] of `j` size.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
/// ```text
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
/// |h i j|
/// |k l m|
/// ```
/// where each element is a [VecZnxDft].
///
/// # Arguments
///
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
/// * `a`: the left operand [VecZnx] of the vector matrix product.
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_tmp_bytes].
fn vmp_apply_dft(&self, c: &mut VecZnxDft<DataMut, B>, a: &VecZnx<Data>, b: &MatZnxDft<Data, B>, scratch: &mut Scratch);
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
///
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
/// `j` size, the output is a [VecZnx] of `j` size.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
/// ```text
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
/// |h i j|
/// |k l m|
/// ```
/// where each element is a [VecZnxDft].
///
/// # Arguments
///
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
fn vmp_apply_dft_to_dft(
&self,
c: &mut VecZnxDft<DataMut, B>,
a: &VecZnxDft<Data, B>,
b: &MatZnxDft<Data, B>,
scratch: &mut Scratch,
);
}
impl<B: Backend> MatZnxDftAlloc<B> for Module<B> {
fn bytes_of_mat_znx_dft(&self, rows: usize, cols_in: usize, cols_out: usize, size: usize) -> usize {
MatZnxDftAllocOwned::bytes_of(self, rows, cols_in, cols_out, size)
}
fn new_mat_znx_dft(&self, rows: usize, cols_in: usize, cols_out: usize, size: usize) -> MatZnxDftAllocOwned<B> {
MatZnxDftAllocOwned::new(self, rows, cols_in, cols_out, size)
}
fn new_mat_znx_dft_from_bytes(
&self,
rows: usize,
cols_in: usize,
cols_out: usize,
size: usize,
bytes: Vec<u8>,
) -> MatZnxDftAllocOwned<B> {
MatZnxDftAllocOwned::new_from_bytes(self, rows, cols_in, cols_out, size, bytes)
}
}
impl<B: Backend> MatZnxDftScratch for Module<B> {
fn vmp_prepare_row_tmp_bytes(&self, cols_out: usize, size: usize) -> usize {
<Self as VecZnxDftAlloc<_>>::bytes_of_vec_znx_dft(self, cols_out, size)
}
fn vmp_extract_row_tmp_bytes(&self, cols_out: usize, size: usize) -> usize {
<Self as VecZnxDftAlloc<_>>::bytes_of_vec_znx_dft(self, cols_out, size)
+ <Self as VecZnxBigScratch>::vec_znx_big_normalize_tmp_bytes(self)
}
fn vmp_apply_dft_tmp_bytes(
&self,
c_size: usize,
a_size: usize,
b_rows: usize,
b_cols_in: usize,
b_cols_out: usize,
b_size: usize,
) -> usize {
unsafe {
vmp::vmp_apply_dft_tmp_bytes(
self.ptr,
c_size as u64,
a_size as u64,
(b_rows * b_cols_in) as u64,
(b_size * b_cols_out) as u64,
) as usize
}
}
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_cols: usize,
c_size: usize,
a_cols: usize,
a_size: usize,
b_rows: usize,
b_cols_in: usize,
b_cols_out: usize,
b_size: usize,
) -> usize {
unsafe {
vmp::vmp_apply_dft_to_dft_tmp_bytes(
self.ptr,
(c_size * c_cols) as u64,
(a_size * a_cols) as u64,
(b_rows * b_cols_in) as u64,
(b_size * b_cols_out) as u64,
) as usize
}
}
}
impl MatZnxDftOps<&mut [u8], &[u8], FFT64> for Module<FFT64> {
fn vmp_prepare_row(
&self,
b: &mut MatZnxDft<&mut [u8], FFT64>,
b_row: usize,
b_col_in: usize,
a: &VecZnx<&[u8]>,
scratch: &mut Scratch,
) {
#[cfg(debug_assertions)]
{
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
a.cols(),
b.cols_out(),
"a.cols(): {} != b.cols_out(): {}",
a.cols(),
b.cols_out()
);
assert!(
b_row < b.rows(),
"b_row: {} >= b.rows(): {}",
b_row,
b.rows()
);
assert!(
b_col_in < b.cols_in(),
"b_col_in: {} >= b.cols_in(): {}",
b_col_in,
b.cols_in()
);
assert_eq!(
b.size(),
a.size(),
"b.size(): {} != a.size(): {}",
b.size(),
a.size()
);
// assert!(
// tmp_bytes.len()
// >= <Self as MatZnxDftOps<DataMut, Data, FFT64>>::vmp_prepare_row_tmp_bytes(self, a.cols(), a.size())
// );
// assert!(is_aligned(tmp_bytes.as_ptr()))
}
let cols_out: usize = a.cols();
let a_size: usize = a.size();
// let (tmp_bytes_a_dft, _) = tmp_bytes.split_at_mut(self.bytes_of_vec_znx_dft(cols_out, a_size));
let (mut a_dft, _) = scratch.tmp_vec_znx_dft::<_>(self, cols_out, a_size);
(0..cols_out).for_each(|i| self.vec_znx_dft(&mut a_dft, i, &a, i));
Self::vmp_prepare_row_dft(&self, b, b_row, b_col_in, &a_dft.to_ref());
}
fn vmp_extract_row(
&self,
log_base2k: usize,
b: &mut VecZnx<&mut [u8]>,
a: &MatZnxDft<&[u8], FFT64>,
a_row: usize,
a_col_in: usize,
scratch: &mut Scratch,
) {
#[cfg(debug_assertions)]
{
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
b.cols(),
a.cols_out(),
"b.cols(): {} != a.cols_out(): {}",
b.cols(),
a.cols_out()
);
assert!(
a_row < a.rows(),
"a_row: {} >= a.rows(): {}",
a_row,
a.rows()
);
assert!(
a_col_in < a.cols_in(),
"a_col_in: {} >= a.cols_in(): {}",
a_col_in,
a.cols_in()
);
assert_eq!(
b.size(),
a.size(),
"b.size(): {} != a.size(): {}",
b.size(),
a.size()
);
// assert!(tmp_bytes.len() >= self.vmp_extract_row_tmp_bytes(a.cols(), a.size()));
// assert!(is_aligned(tmp_bytes.as_ptr()))
}
let cols_out: usize = b.cols();
let size: usize = b.size();
// let (bytes_a_dft, tmp_bytes) = tmp_bytes.split_at_mut(self.bytes_of_vec_znx_dft(cols_out, size));
let (mut b_dft, scratch) = scratch.tmp_vec_znx_dft(self, cols_out, size);
Self::vmp_extract_row_dft(&self, &mut b_dft, a, a_row, a_col_in);
let (mut b_big, scratch) = scratch.tmp_vec_znx_big(self, cols_out, size);
(0..cols_out).for_each(|i| {
<Self as VecZnxDftOps<&mut [u8], &[u8], FFT64>>::vec_znx_idft_tmp_a(self, &mut b_big, i, &mut b_dft, i);
self.vec_znx_big_normalize(log_base2k, b, i, &b_big, i, scratch);
});
}
fn vmp_prepare_row_dft(
&self,
b: &mut MatZnxDft<&mut [u8], FFT64>,
b_row: usize,
b_col_in: usize,
a: &VecZnxDft<&[u8], FFT64>,
) {
#[cfg(debug_assertions)]
{
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
a.cols(),
b.cols_out(),
"a.cols(): {} != b.cols_out(): {}",
a.cols(),
b.cols_out()
);
assert!(
b_row < b.rows(),
"b_row: {} >= b.rows(): {}",
b_row,
b.rows()
);
assert!(
b_col_in < b.cols_in(),
"b_col_in: {} >= b.cols_in(): {}",
b_col_in,
b.cols_in()
);
assert_eq!(
b.size(),
a.size(),
"b.size(): {} != a.size(): {}",
b.size(),
a.size()
);
}
unsafe {
vmp::vmp_prepare_row_dft(
self.ptr,
b.as_mut_ptr() as *mut vmp::vmp_pmat_t,
a.as_ptr() as *const vec_znx_dft_t,
(b_row * b.cols_in() + b_col_in) as u64,
(b.rows() * b.cols_in()) as u64,
(b.size() * b.cols_out()) as u64,
);
}
}
fn vmp_extract_row_dft(
&self,
b: &mut VecZnxDft<&mut [u8], FFT64>,
a: &MatZnxDft<&[u8], FFT64>,
a_row: usize,
a_col_in: usize,
) {
#[cfg(debug_assertions)]
{
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
b.cols(),
a.cols_out(),
"b.cols(): {} != a.cols_out(): {}",
b.cols(),
a.cols_out()
);
assert!(
a_row < a.rows(),
"a_row: {} >= a.rows(): {}",
a_row,
a.rows()
);
assert!(
a_col_in < a.cols_in(),
"a_col_in: {} >= a.cols_in(): {}",
a_col_in,
a.cols_in()
);
assert_eq!(
b.size(),
a.size(),
"b.size(): {} != a.size(): {}",
b.size(),
a.size()
);
}
unsafe {
vmp::vmp_extract_row_dft(
self.ptr,
b.as_mut_ptr() as *mut vec_znx_dft_t,
a.as_ptr() as *const vmp::vmp_pmat_t,
(a_row * a.cols_in() + a_col_in) as u64,
(a.rows() * a.cols_in()) as u64,
(a.size() * a.cols_out()) as u64,
);
}
}
fn vmp_apply_dft(
&self,
c: &mut VecZnxDft<&mut [u8], FFT64>,
a: &VecZnx<&[u8]>,
b: &MatZnxDft<&[u8], FFT64>,
scratch: &mut Scratch,
) {
#[cfg(debug_assertions)]
{
assert_eq!(c.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
c.cols(),
b.cols_out(),
"c.cols(): {} != b.cols_out: {}",
c.cols(),
b.cols_out()
);
assert_eq!(
a.cols(),
b.cols_in(),
"a.cols(): {} != b.cols_in: {}",
a.cols(),
b.cols_in()
);
// assert!(
// tmp_bytes.len()
// >= self.vmp_apply_dft_tmp_bytes(
// c.size(),
// a.size(),
// b.rows(),
// b.cols_in(),
// b.cols_out(),
// b.size()
// )
// );
// assert_alignement(tmp_bytes.as_ptr());
}
let (tmp_bytes, _) = scratch.tmp_scalar_slice(<Self as MatZnxDftScratch>::vmp_apply_dft_tmp_bytes(
self,
c.size(),
a.size(),
b.rows(),
b.cols_in(),
b.cols_out(),
b.size(),
));
unsafe {
vmp::vmp_apply_dft(
self.ptr,
c.as_mut_ptr() as *mut vec_znx_dft_t,
(c.size() * c.cols()) as u64,
a.as_ptr(),
(a.size() * a.cols()) as u64,
a.n() as u64,
b.as_ptr() as *const vmp::vmp_pmat_t,
(b.rows() * b.cols_in()) as u64,
(b.size() * b.cols_out()) as u64,
tmp_bytes.as_mut_ptr(),
)
}
}
fn vmp_apply_dft_to_dft(
&self,
c: &mut VecZnxDft<&mut [u8], FFT64>,
a: &VecZnxDft<&[u8], FFT64>,
b: &MatZnxDft<&[u8], FFT64>,
scratch: &mut Scratch,
) {
{
#[cfg(debug_assertions)]
{
assert_eq!(c.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(a.n(), self.n());
assert_eq!(
c.cols(),
b.cols_out(),
"c.cols(): {} != b.cols_out: {}",
c.cols(),
b.cols_out()
);
assert_eq!(
a.cols(),
b.cols_in(),
"a.cols(): {} != b.cols_in: {}",
a.cols(),
b.cols_in()
);
// assert!(
// tmp_bytes.len()
// >= self.vmp_apply_dft_to_dft_tmp_bytes(
// c.cols(),
// c.size(),
// a.cols(),
// a.size(),
// b.rows(),
// b.cols_in(),
// b.cols_out(),
// b.size()
// )
// );
// assert_alignement(tmp_bytes.as_ptr());
}
let (tmp_bytes, _) = scratch.tmp_scalar_slice(self.vmp_apply_dft_to_dft_tmp_bytes(
c.cols(),
c.size(),
a.cols(),
a.size(),
b.rows(),
b.cols_in(),
b.cols_out(),
b.size(),
));
unsafe {
vmp::vmp_apply_dft_to_dft(
self.ptr,
c.as_mut_ptr() as *mut vec_znx_dft_t,
c.poly_count() as u64,
a.as_ptr() as *const vec_znx_dft_t,
a.poly_count() as u64,
b.as_ptr() as *const vmp::vmp_pmat_t,
b.rows() as u64,
(b.size() * b.cols()) as u64,
tmp_bytes.as_mut_ptr(),
)
}
}
}
}
#[cfg(test)]
mod tests {
use crate::ScratchOwned;
use crate::mat_znx_dft_ops::*;
use crate::vec_znx_big_ops::*;
use crate::vec_znx_dft_ops::*;
use crate::vec_znx_ops::*;
use crate::{
FFT64, MatZnxDft, MatZnxDftOps, Module, Sampling, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, alloc_aligned,
};
use sampling::source::Source;
#[test]
fn vmp_prepare_row_dft() {
let module: Module<FFT64> = Module::<FFT64>::new(16);
let log_base2k: usize = 8;
let mat_rows: usize = 4;
let mat_cols_in: usize = 2;
let mat_cols_out: usize = 2;
let mat_size: usize = 5;
let mut a: VecZnx<_> = module.new_vec_znx(mat_cols_out, mat_size);
let mut b: VecZnx<_> = module.new_vec_znx(mat_cols_out, mat_size);
let mut a_dft: VecZnxDft<_, FFT64> = module.new_vec_znx_dft(mat_cols_out, mat_size);
let mut a_big: VecZnxBig<_, FFT64> = module.new_vec_znx_big(mat_cols_out, mat_size);
let mut b_dft: VecZnxDft<_, FFT64> = module.new_vec_znx_dft(mat_cols_out, mat_size);
let mut vmpmat_0: MatZnxDft<_, FFT64> = module.new_mat_znx_dft(mat_rows, mat_cols_in, mat_cols_out, mat_size);
let mut vmpmat_1: MatZnxDft<_, FFT64> = module.new_mat_znx_dft(mat_rows, mat_cols_in, mat_cols_out, mat_size);
// let mut tmp_bytes: Vec<u8> =
// alloc_aligned(module.vmp_prepare_row_tmp_bytes(mat_cols_out, mat_size) | module.vec_znx_big_normalize_tmp_bytes());
let mut scratch = ScratchOwned::new(
2 * (module.vmp_prepare_row_tmp_bytes(mat_cols_out, mat_size) + module.vec_znx_big_normalize_tmp_bytes()),
);
let mut tmp_bytes: Vec<u8> =
alloc_aligned::<u8>(<Module<FFT64> as VecZnxDftOps<Vec<u8>, Vec<u8>, _>>::vec_znx_idft_tmp_bytes(&module));
for col_in in 0..mat_cols_in {
for row_i in 0..mat_rows {
let mut source: Source = Source::new([0u8; 32]);
(0..mat_cols_out).for_each(|col_out| {
module.fill_uniform(log_base2k, &mut a, col_out, mat_size, &mut source);
module.vec_znx_dft(&mut a_dft, col_out, &a, col_out);
});
module.vmp_prepare_row(
&mut vmpmat_0.to_mut(),
row_i,
col_in,
&a.to_ref(),
scratch.borrow(),
);
// Checks that prepare(mat_znx_dft, a) = prepare_dft(mat_znx_dft, a_dft)
module.vmp_prepare_row_dft(&mut vmpmat_1.to_mut(), row_i, col_in, &a_dft.to_ref());
assert_eq!(vmpmat_0.raw(), vmpmat_1.raw());
// Checks that a_dft = extract_dft(prepare(mat_znx_dft, a), b_dft)
module.vmp_extract_row_dft(&mut b_dft.to_mut(), &vmpmat_0.to_ref(), row_i, col_in);
assert_eq!(a_dft.raw(), b_dft.raw());
// Checks that a_big = extract(prepare_dft(mat_znx_dft, a_dft), b_big)
module.vmp_extract_row(
log_base2k,
&mut b.to_mut(),
&vmpmat_0.to_ref(),
row_i,
col_in,
scratch.borrow(),
);
(0..mat_cols_out).for_each(|col_out| {
module.vec_znx_idft(&mut a_big, col_out, &a_dft, col_out, &mut tmp_bytes);
module.vec_znx_big_normalize(
log_base2k,
&mut a.to_mut(),
col_out,
&a_big.to_ref(),
col_out,
scratch.borrow(),
);
});
assert_eq!(a.raw(), b.raw());
}
}
module.free();
}
}