Files
poulpy/poulpy-core/src/conversion/gglwe_to_ggsw.rs
2025-10-16 16:57:30 +02:00

279 lines
11 KiB
Rust

use poulpy_hal::{
api::{
ModuleN, ScratchAvailable, ScratchTakeBasic, VecZnxBigBytesOf, VecZnxBigNormalize, VecZnxDftAddInplace, VecZnxDftApply,
VecZnxDftBytesOf, VecZnxDftCopy, VecZnxIdftApplyTmpA, VecZnxNormalize, VecZnxNormalizeTmpBytes, VmpApplyDftToDft,
VmpApplyDftToDftAdd, VmpApplyDftToDftTmpBytes,
},
layouts::{Backend, DataMut, Module, Scratch, VmpPMat, ZnxInfos},
};
use crate::{
GLWECopy, ScratchTakeCore,
layouts::{
GGLWE, GGLWEInfos, GGLWEToRef, GGSW, GGSWInfos, GGSWToMut, GLWEInfos, LWEInfos,
prepared::{TensorKeyPrepared, TensorKeyPreparedToRef},
},
};
impl GGLWE<Vec<u8>> {
pub fn from_gglw_tmp_bytes<R, A, M, BE: Backend>(module: &M, res_infos: &R, tsk_infos: &A) -> usize
where
M: GGSWFromGGLWE<BE>,
R: GGSWInfos,
A: GGLWEInfos,
{
module.ggsw_from_gglwe_tmp_bytes(res_infos, tsk_infos)
}
}
impl<D: DataMut> GGSW<D> {
pub fn from_gglwe<G, M, T, BE: Backend>(&mut self, module: &M, gglwe: &G, tsk: &T, scratch: &mut Scratch<BE>)
where
M: GGSWFromGGLWE<BE>,
G: GGLWEToRef,
T: TensorKeyPreparedToRef<BE>,
Scratch<BE>: ScratchTakeCore<BE>,
{
module.ggsw_from_gglwe(self, gglwe, tsk, scratch);
}
}
impl<BE: Backend> GGSWFromGGLWE<BE> for Module<BE> where Self: GGSWExpandRows<BE> + GLWECopy {}
pub trait GGSWFromGGLWE<BE: Backend>
where
Self: GGSWExpandRows<BE> + GLWECopy,
{
fn ggsw_from_gglwe_tmp_bytes<R, A>(&self, res_infos: &R, tsk_infos: &A) -> usize
where
R: GGSWInfos,
A: GGLWEInfos,
{
self.ggsw_expand_rows_tmp_bytes(res_infos, tsk_infos)
}
fn ggsw_from_gglwe<R, A, T>(&self, res: &mut R, a: &A, tsk: &T, scratch: &mut Scratch<BE>)
where
R: GGSWToMut,
A: GGLWEToRef,
T: TensorKeyPreparedToRef<BE>,
Scratch<BE>: ScratchTakeCore<BE>,
{
let res: &mut GGSW<&mut [u8]> = &mut res.to_mut();
let a: &GGLWE<&[u8]> = &a.to_ref();
let tsk: &TensorKeyPrepared<&[u8], BE> = &tsk.to_ref();
assert_eq!(res.rank(), a.rank_out());
assert_eq!(res.dnum(), a.dnum());
assert_eq!(res.n(), self.n() as u32);
assert_eq!(a.n(), self.n() as u32);
assert_eq!(tsk.n(), self.n() as u32);
for row in 0..res.dnum().into() {
self.glwe_copy(&mut res.at_mut(row, 0), &a.at(row, 0));
}
self.ggsw_expand_row(res, tsk, scratch);
}
}
impl<BE: Backend> GGSWExpandRows<BE> for Module<BE> where
Self: Sized
+ ModuleN
+ VecZnxDftBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigBytesOf
+ VecZnxNormalizeTmpBytes
+ VecZnxDftBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigBytesOf
+ VecZnxNormalizeTmpBytes
+ VecZnxDftApply<BE>
+ VecZnxDftCopy<BE>
+ VmpApplyDftToDft<BE>
+ VmpApplyDftToDftAdd<BE>
+ VecZnxDftAddInplace<BE>
+ VecZnxBigNormalize<BE>
+ VecZnxIdftApplyTmpA<BE>
+ VecZnxNormalize<BE>
{
}
pub(crate) trait GGSWExpandRows<BE: Backend>
where
Self: Sized
+ ModuleN
+ VecZnxDftBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigBytesOf
+ VecZnxNormalizeTmpBytes
+ VecZnxDftBytesOf
+ VmpApplyDftToDftTmpBytes
+ VecZnxBigBytesOf
+ VecZnxNormalizeTmpBytes
+ VecZnxDftApply<BE>
+ VecZnxDftCopy<BE>
+ VmpApplyDftToDft<BE>
+ VmpApplyDftToDftAdd<BE>
+ VecZnxDftAddInplace<BE>
+ VecZnxBigNormalize<BE>
+ VecZnxIdftApplyTmpA<BE>
+ VecZnxNormalize<BE>,
{
fn ggsw_expand_rows_tmp_bytes<R, A>(&self, res_infos: &R, tsk_infos: &A) -> usize
where
R: GGSWInfos,
A: GGLWEInfos,
{
let tsk_size: usize = tsk_infos.k().div_ceil(tsk_infos.base2k()) as usize;
let size_in: usize = res_infos
.k()
.div_ceil(tsk_infos.base2k())
.div_ceil(tsk_infos.dsize().into()) as usize;
let tmp_dft_i: usize = self.bytes_of_vec_znx_dft((tsk_infos.rank_out() + 1).into(), tsk_size);
let tmp_a: usize = self.bytes_of_vec_znx_dft(1, size_in);
let vmp: usize = self.vmp_apply_dft_to_dft_tmp_bytes(
tsk_size,
size_in,
size_in,
(tsk_infos.rank_in()).into(), // Verify if rank+1
(tsk_infos.rank_out()).into(), // Verify if rank+1
tsk_size,
);
let tmp_idft: usize = self.bytes_of_vec_znx_big(1, tsk_size);
let norm: usize = self.vec_znx_normalize_tmp_bytes();
tmp_dft_i + ((tmp_a + vmp) | (tmp_idft + norm))
}
fn ggsw_expand_row<R, T>(&self, res: &mut R, tsk: &T, scratch: &mut Scratch<BE>)
where
R: GGSWToMut,
T: TensorKeyPreparedToRef<BE>,
Scratch<BE>: ScratchTakeCore<BE>,
{
let res: &mut GGSW<&mut [u8]> = &mut res.to_mut();
let tsk: &TensorKeyPrepared<&[u8], BE> = &tsk.to_ref();
let basek_in: usize = res.base2k().into();
let basek_tsk: usize = tsk.base2k().into();
assert!(scratch.available() >= self.ggsw_expand_rows_tmp_bytes(res, tsk));
let rank: usize = res.rank().into();
let cols: usize = rank + 1;
let a_size: usize = (res.size() * basek_in).div_ceil(basek_tsk);
// Keyswitch the j-th row of the col 0
for row_i in 0..res.dnum().into() {
let a = &res.at(row_i, 0).data;
// Pre-compute DFT of (a0, a1, a2)
let (mut ci_dft, scratch_1) = scratch.take_vec_znx_dft(self, cols, a_size);
if basek_in == basek_tsk {
for i in 0..cols {
self.vec_znx_dft_apply(1, 0, &mut ci_dft, i, a, i);
}
} else {
let (mut a_conv, scratch_2) = scratch_1.take_vec_znx(self, 1, a_size);
for i in 0..cols {
self.vec_znx_normalize(basek_tsk, &mut a_conv, 0, basek_in, a, i, scratch_2);
self.vec_znx_dft_apply(1, 0, &mut ci_dft, i, &a_conv, 0);
}
}
for col_j in 1..cols {
// Example for rank 3:
//
// Note: M is a vector (m, Bm, B^2m, B^3m, ...), so each column is
// actually composed of that many dnum and we focus on a specific row here
// implicitely given ci_dft.
//
// # Input
//
// col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0 , a1 , a2 )
// col 1: (0, 0, 0, 0)
// col 2: (0, 0, 0, 0)
// col 3: (0, 0, 0, 0)
//
// # Output
//
// col 0: (-(a0s0 + a1s1 + a2s2) + M[i], a0 , a1 , a2 )
// col 1: (-(b0s0 + b1s1 + b2s2) , b0 + M[i], b1 , b2 )
// col 2: (-(c0s0 + c1s1 + c2s2) , c0 , c1 + M[i], c2 )
// col 3: (-(d0s0 + d1s1 + d2s2) , d0 , d1 , d2 + M[i])
let dsize: usize = tsk.dsize().into();
let (mut tmp_dft_i, scratch_2) = scratch_1.take_vec_znx_dft(self, cols, tsk.size());
let (mut tmp_a, scratch_3) = scratch_2.take_vec_znx_dft(self, 1, ci_dft.size().div_ceil(dsize));
{
// Performs a key-switch for each combination of s[i]*s[j], i.e. for a0, a1, a2
//
// # Example for col=1
//
// a0 * (-(f0s0 + f1s1 + f1s2) + s0^2, f0, f1, f2) = (-(a0f0s0 + a0f1s1 + a0f1s2) + a0s0^2, a0f0, a0f1, a0f2)
// +
// a1 * (-(g0s0 + g1s1 + g1s2) + s0s1, g0, g1, g2) = (-(a1g0s0 + a1g1s1 + a1g1s2) + a1s0s1, a1g0, a1g1, a1g2)
// +
// a2 * (-(h0s0 + h1s1 + h1s2) + s0s2, h0, h1, h2) = (-(a2h0s0 + a2h1s1 + a2h1s2) + a2s0s2, a2h0, a2h1, a2h2)
// =
// (-(x0s0 + x1s1 + x2s2) + s0(a0s0 + a1s1 + a2s2), x0, x1, x2)
for col_i in 1..cols {
let pmat: &VmpPMat<&[u8], BE> = &tsk.at(col_i - 1, col_j - 1).key.data; // Selects Enc(s[i]s[j])
// Extracts a[i] and multipies with Enc(s[i]s[j])
for di in 0..dsize {
tmp_a.set_size((ci_dft.size() + di) / dsize);
// Small optimization for dsize > 2
// VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then
// we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(dsize-1) * B}.
// As such we can ignore the last dsize-2 limbs safely of the sum of vmp products.
// It is possible to further ignore the last dsize-1 limbs, but this introduce
// ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same
// noise is kept with respect to the ideal functionality.
tmp_dft_i.set_size(tsk.size() - ((dsize - di) as isize - 2).max(0) as usize);
self.vec_znx_dft_copy(dsize, dsize - 1 - di, &mut tmp_a, 0, &ci_dft, col_i);
if di == 0 && col_i == 1 {
self.vmp_apply_dft_to_dft(&mut tmp_dft_i, &tmp_a, pmat, scratch_3);
} else {
self.vmp_apply_dft_to_dft_add(&mut tmp_dft_i, &tmp_a, pmat, di, scratch_3);
}
}
}
}
// Adds -(sum a[i] * s[i]) + m) on the i-th column of tmp_idft_i
//
// (-(x0s0 + x1s1 + x2s2) + a0s0s0 + a1s0s1 + a2s0s2, x0, x1, x2)
// +
// (0, -(a0s0 + a1s1 + a2s2) + M[i], 0, 0)
// =
// (-(x0s0 + x1s1 + x2s2) + s0(a0s0 + a1s1 + a2s2), x0 -(a0s0 + a1s1 + a2s2) + M[i], x1, x2)
// =
// (-(x0s0 + x1s1 + x2s2), x0 + M[i], x1, x2)
self.vec_znx_dft_add_inplace(&mut tmp_dft_i, col_j, &ci_dft, 0);
let (mut tmp_idft, scratch_3) = scratch_2.take_vec_znx_big(self, 1, tsk.size());
for i in 0..cols {
self.vec_znx_idft_apply_tmpa(&mut tmp_idft, 0, &mut tmp_dft_i, i);
self.vec_znx_big_normalize(
basek_in,
&mut res.at_mut(row_i, col_j).data,
i,
basek_tsk,
&tmp_idft,
0,
scratch_3,
);
}
}
}
}
}