Files
poulpy/core/src/test_fft64/glwe_fourier.rs
Jean-Philippe Bossuat de4a5e9bfc refactored secret key
2025-05-30 20:19:04 +02:00

424 lines
14 KiB
Rust

use crate::{
GGSWCiphertext, GLWECiphertext, GLWECiphertextFourier, GLWEOps, GLWEPlaintext, GLWESecret, GLWESwitchingKey, Infos,
test_fft64::{gglwe::log2_std_noise_gglwe_product, ggsw::noise_ggsw_product},
};
use backend::{FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut};
use sampling::source::Source;
#[test]
fn keyswitch() {
(1..4).for_each(|rank_in| {
(1..4).for_each(|rank_out| {
println!("test keyswitch rank_in: {} rank_out: {}", rank_in, rank_out);
test_keyswitch(12, 12, 60, 45, 60, rank_in, rank_out, 3.2);
});
});
}
#[test]
fn keyswitch_inplace() {
(1..4).for_each(|rank| {
println!("test keyswitch_inplace rank: {}", rank);
test_keyswitch_inplace(12, 12, 60, 45, rank, 3.2);
});
}
#[test]
fn external_product() {
(1..4).for_each(|rank| {
println!("test external_product rank: {}", rank);
test_external_product(12, 12, 60, 45, 60, rank, 3.2);
});
}
#[test]
fn external_product_inplace() {
(1..4).for_each(|rank| {
println!("test external_product rank: {}", rank);
test_external_product_inplace(12, 15, 60, 60, rank, 3.2);
});
}
fn test_keyswitch(
log_n: usize,
basek: usize,
k_ksk: usize,
k_ct_in: usize,
k_ct_out: usize,
rank_in: usize,
rank_out: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct_in + basek - 1) / basek;
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, rank_in, rank_out);
let mut ct_glwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank_in);
let mut ct_glwe_dft_in: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::alloc(&module, basek, k_ct_in, rank_in);
let mut ct_glwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank_out);
let mut ct_glwe_dft_out: GLWECiphertextFourier<Vec<u8>, FFT64> =
GLWECiphertextFourier::alloc(&module, basek, k_ct_out, rank_out);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_out)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_ct_out)
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_ct_in)
| GLWECiphertextFourier::keyswitch_scratch_space(
&module,
basek,
ct_glwe_out.k(),
rank_out,
ct_glwe_in.k(),
rank_in,
ksk.k(),
),
);
let mut sk_in: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_in);
sk_in.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk_out: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_out);
sk_out.fill_ternary_prob(&module, 0.5, &mut source_xs);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_in.encrypt_sk(
&module,
&pt_want,
&sk_in,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_in.dft(&module, &mut ct_glwe_dft_in);
ct_glwe_dft_out.keyswitch(&module, &ct_glwe_dft_in, &ksk, scratch.borrow());
ct_glwe_dft_out.idft(&module, &mut ct_glwe_out, scratch.borrow());
ct_glwe_out.decrypt(&module, &mut pt_have, &sk_out, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank_in as f64,
k_ct_in,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ksk: usize, k_ct: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct + basek - 1) / basek;
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, rank, rank);
let mut ct_glwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertextFourier::keyswitch_inplace_scratch_space(&module, basek, ct_rlwe_dft.k(), ksk.k(), rank),
);
let mut sk_in: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk_in.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk_out: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk_out.fill_ternary_prob(&module, 0.5, &mut source_xs);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.encrypt_sk(
&module,
&pt_want,
&sk_in,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.keyswitch_inplace(&module, &ksk, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_glwe, scratch.borrow());
ct_glwe.decrypt(&module, &mut pt_have, &sk_out, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product(log_n: usize, basek: usize, k_ggsw: usize, k_ct_in: usize, k_ct_out: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct_in + basek - 1) / basek;
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank);
let mut ct_in_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct_in, rank);
let mut ct_out_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct_out, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: i64 = 1;
pt_rgsw.raw_mut()[0] = 1; // X^{0}
module.vec_znx_rotate_inplace(k, &mut pt_rgsw, 0); // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertextFourier::external_product_scratch_space(&module, basek, ct_out.k(), ct_in.k(), ct_ggsw.k(), rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.dft(&module, &mut ct_in_dft);
ct_out_dft.external_product(&module, &ct_in_dft, &ct_ggsw, scratch.borrow());
ct_out_dft.idft(&module, &mut ct_out, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
pt_want.rotate_inplace(&module, k);
pt_have.sub_inplace_ab(&module, &pt_want);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct_in,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product_inplace(log_n: usize, basek: usize, k_ggsw: usize, k_ct: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct + basek - 1) / basek;
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut ct_rlwe_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: i64 = 1;
pt_rgsw.raw_mut()[0] = 1; // X^{0}
module.vec_znx_rotate_inplace(k, &mut pt_rgsw, 0); // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertextFourier::external_product_inplace_scratch_space(&module, basek, ct.k(), ct_ggsw.k(), rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.external_product_inplace(&module, &ct_ggsw, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct, scratch.borrow());
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
pt_want.rotate_inplace(&module, k);
pt_have.sub_inplace_ab(&module, &pt_want);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}