Files
poulpy/base2k/src/vec_znx.rs
Jean-Philippe Bossuat e6cb70dbdf updated handling of modulus
2025-02-03 15:30:12 +01:00

472 lines
16 KiB
Rust

use crate::cast_mut_u8_to_mut_i64_slice;
use crate::ffi::znx::{
znx_automorphism_i64, znx_automorphism_inplace_i64, znx_normalize, znx_zero_i64_ref,
};
use crate::module::Module;
use itertools::izip;
use rand_distr::{Distribution, Normal};
use sampling::source::Source;
use std::cmp::min;
impl Module {
pub fn new_vec_znx(&self, log_base2k: usize, log_q: usize) -> VecZnx {
VecZnx::new(self.n(), log_base2k, log_q)
}
}
#[derive(Clone)]
pub struct VecZnx {
pub n: usize,
pub log_base2k: usize,
pub data: Vec<i64>,
}
impl VecZnx {
pub fn new(n: usize, log_base2k: usize, limbs: usize) -> Self {
Self {
n: n,
log_base2k: log_base2k,
data: vec![i64::default(); Self::buffer_size(n, limbs)],
}
}
pub fn buffer_size(n: usize, limbs: usize) -> usize {
n * limbs
}
pub fn from_buffer(&mut self, n: usize, log_base2k: usize, limbs: usize, buf: &[i64]) {
let size = Self::buffer_size(n, limbs);
assert!(
buf.len() >= size,
"invalid buffer: buf.len()={} < self.buffer_size(n={}, limbs={})={}",
buf.len(),
n,
limbs,
size
);
self.n = n;
self.log_base2k = log_base2k;
self.data = Vec::from(&buf[..size])
}
pub fn log_n(&self) -> u64 {
(u64::BITS - (self.n - 1).leading_zeros()) as _
}
pub fn n(&self) -> usize {
self.n
}
pub fn limbs(&self) -> usize {
self.data.len() / self.n
}
pub fn copy_from(&mut self, a: &VecZnx) {
let size = min(self.data.len(), a.data.len());
self.data[..size].copy_from_slice(&a.data[..size])
}
pub fn as_ptr(&self) -> *const i64 {
self.data.as_ptr()
}
pub fn as_mut_ptr(&mut self) -> *mut i64 {
self.data.as_mut_ptr()
}
pub fn at(&self, i: usize) -> &[i64] {
&self.data[i * self.n..(i + 1) * self.n]
}
pub fn at_ptr(&self, i: usize) -> *const i64 {
&self.data[i * self.n] as *const i64
}
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
&mut self.data[i * self.n] as *mut i64
}
pub fn at_mut(&mut self, i: usize) -> &mut [i64] {
&mut self.data[i * self.n..(i + 1) * self.n]
}
pub fn zero(&mut self) {
unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
}
pub fn from_i64(&mut self, data: &[i64], log_max: usize, log_k: usize) {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k {
(0..limbs - 1).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << self.log_base2k) - 1;
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * self.log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != self.log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
(limbs - steps..limbs).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
}
pub fn from_i64_single(&mut self, i: usize, value: i64, log_max: usize, log_k: usize) {
assert!(i < self.n());
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let log_k_rem: usize = self.log_base2k - (log_k % self.log_base2k);
let limbs = self.limbs();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == self.log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value;
} else {
let mask: i64 = (1 << self.log_base2k) - 1;
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * self.log_base2k)) & mask;
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != self.log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + self.log_base2k - 1) / self.log_base2k);
(limbs - steps..limbs).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
}
pub fn normalize(&mut self, carry: &mut [u8]) {
assert!(
carry.len() >= self.n * 8,
"invalid carry: carry.len()={} < self.n()={}",
carry.len(),
self.n()
);
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
(0..self.limbs()).rev().for_each(|i| {
znx_normalize(
self.n as u64,
self.log_base2k as u64,
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
)
});
}
}
pub fn to_i64(&self, data: &mut [i64], log_k: usize) {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n
);
data.copy_from_slice(self.at(0));
let rem: usize = self.log_base2k - (log_k % self.log_base2k);
(1..limbs).for_each(|i| {
if i == limbs - 1 && rem != self.log_base2k {
let k_rem: usize = self.log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << self.log_base2k) + x;
});
}
})
}
pub fn to_i64_single(&self, i: usize, log_k: usize) -> i64 {
let limbs: usize = (log_k + self.log_base2k - 1) / self.log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = self.log_base2k - (log_k % self.log_base2k);
(1..limbs).for_each(|i| {
let x = self.data[i * self.n];
if i == limbs - 1 && rem != self.log_base2k {
let k_rem: usize = self.log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << self.log_base2k) + x;
}
});
res
}
pub fn automorphism_inplace(&mut self, gal_el: i64) {
unsafe {
(0..self.limbs()).for_each(|i| {
znx_automorphism_inplace_i64(self.n as u64, gal_el, self.at_mut_ptr(i))
})
}
}
pub fn automorphism(&mut self, gal_el: i64, a: &mut VecZnx) {
unsafe {
(0..self.limbs()).for_each(|i| {
znx_automorphism_i64(self.n as u64, gal_el, a.at_mut_ptr(i), self.at_ptr(i))
})
}
}
pub fn fill_uniform(&mut self, source: &mut Source, log_k: usize) {
let mut base2k: u64 = 1 << self.log_base2k;
let mut mask: u64 = base2k - 1;
let mut base2k_half: i64 = (base2k >> 1) as i64;
let size: usize = self.n() * (self.limbs() - 1);
self.data[..size]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
let log_base2k_rem: usize = log_k % self.log_base2k;
if log_base2k_rem != 0 {
base2k = 1 << log_base2k_rem;
mask = (base2k - 1) << (self.log_base2k - log_base2k_rem);
base2k_half = ((mask >> 1) + 1) as i64;
}
self.data[size..]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
}
pub fn add_dist_f64<T: Distribution<f64>>(
&mut self,
source: &mut Source,
dist: T,
bound: f64,
log_k: usize,
) {
let log_base2k_rem: usize = log_k % self.log_base2k;
if log_base2k_rem != 0 {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += (dist_f64.round() as i64) << log_base2k_rem
});
} else {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += dist_f64.round() as i64
});
}
}
pub fn add_normal(&mut self, source: &mut Source, sigma: f64, bound: f64, log_k: usize) {
self.add_dist_f64(source, Normal::new(0.0, sigma).unwrap(), bound, log_k);
}
pub fn trunc_pow2(&mut self, k: usize) {
if k == 0 {
return;
}
self.data
.truncate((self.limbs() - k / self.log_base2k) * self.n());
let k_rem: usize = k % self.log_base2k;
if k_rem != 0 {
let mask: i64 = ((1 << (self.log_base2k - k_rem - 1)) - 1) << k_rem;
self.at_mut(self.limbs() - 1)
.iter_mut()
.for_each(|x: &mut i64| *x &= mask)
}
}
pub fn rsh(&mut self, k: usize, carry: &mut [u8]) {
assert!(
carry.len() >> 3 >= self.n(),
"invalid carry: carry.len()/8={} < self.n()={}",
carry.len() >> 3,
self.n()
);
let limbs: usize = self.limbs();
let limbs_steps: usize = k / self.log_base2k;
self.data.rotate_right(self.n * limbs_steps);
unsafe {
znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
}
let k_rem = k % self.log_base2k;
if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
}
let mask: i64 = (1 << k_rem) - 1;
let log_base2k: usize = self.log_base2k;
(limbs_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
*xi += *ci << log_base2k;
*ci = *xi & mask;
*xi /= 1 << k_rem;
});
})
}
}
pub fn switch_degree(&self, a: &mut VecZnx) {
let (n_in, n_out) = (self.n(), a.n());
let (gap_in, gap_out): (usize, usize);
if n_in > n_out {
(gap_in, gap_out) = (n_in / n_out, 1)
} else {
(gap_in, gap_out) = (1, n_out / n_in);
a.zero();
}
let limbs = min(self.limbs(), a.limbs());
(0..limbs).for_each(|i| {
izip!(
self.at(i).iter().step_by(gap_in),
a.at_mut(i).iter_mut().step_by(gap_out)
)
.for_each(|(x_in, x_out)| *x_out = *x_in);
});
}
pub fn print_limbs(&self, limbs: usize, n: usize) {
(0..limbs).for_each(|i| println!("{}: {:?}", i, &self.at(i)[..n]))
}
}
#[cfg(test)]
mod tests {
use crate::VecZnx;
use itertools::izip;
use sampling::source::Source;
#[test]
fn test_set_get_i64_lo_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
a.from_i64(&have, 10, log_k);
let mut want = vec![i64::default(); n];
a.to_i64(&mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
}
#[test]
fn test_set_get_i64_hi_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.from_i64(&have, 63, log_k);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.to_i64(&mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
}
#[test]
fn test_normalize() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, log_base2k, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.from_i64(&have, 63, log_k);
let mut carry: Vec<u8> = vec![u8::default(); n * 8];
a.normalize(&mut carry);
let base_half = 1 << (log_base2k - 1);
a.data
.iter()
.for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
let mut want = vec![i64::default(); n];
a.to_i64(&mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
}
}