Browse Source

add folding verifier impl, add last steps of folding prover (except G(X) & K(X))

main
arnaucube 1 year ago
parent
commit
2664dea6a7
2 changed files with 199 additions and 22 deletions
  1. +1
    -1
      README.md
  2. +198
    -21
      src/protogalaxy.rs

+ 1
- 1
README.md

@ -1,6 +1,6 @@
# protogalaxy-poc # protogalaxy-poc
Proof of concept implementation of ProtoGalaxy (https://eprint.iacr.org/2023/1106.pdf).
Proof of concept implementation of ProtoGalaxy (https://eprint.iacr.org/2023/1106.pdf) using [arkworks](https://github.com/arkworks-rs).
> Do not use in production. > Do not use in production.

+ 198
- 21
src/protogalaxy.rs

@ -2,11 +2,15 @@ use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group}; use ark_ec::{CurveGroup, Group};
use ark_ff::fields::PrimeField; use ark_ff::fields::PrimeField;
use ark_std::log2; use ark_std::log2;
use ark_std::{One, Zero};
use ark_std::{cfg_into_iter, One, Zero};
use std::marker::PhantomData; use std::marker::PhantomData;
use std::ops::Add;
use std::ops::{Add, Mul};
use ark_poly::{univariate::SparsePolynomial, Polynomial};
use ark_ff::{batch_inversion, FftField};
use ark_poly::{
univariate::{DensePolynomial, SparsePolynomial},
DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
};
use crate::pedersen::{Commitment, Params as PedersenParams, Pedersen, Proof as PedersenProof}; use crate::pedersen::{Commitment, Params as PedersenParams, Pedersen, Proof as PedersenProof};
use crate::transcript::Transcript; use crate::transcript::Transcript;
@ -38,25 +42,28 @@ where
pub fn prover( pub fn prover(
tr: &mut Transcript<C::ScalarField, C>, tr: &mut Transcript<C::ScalarField, C>,
pedersen_params: &PedersenParams<C>, pedersen_params: &PedersenParams<C>,
r1cs: R1CS<C::ScalarField>,
r1cs: &R1CS<C::ScalarField>,
// running instance // running instance
instance: CommittedInstance<C>, instance: CommittedInstance<C>,
w: Witness<C>, w: Witness<C>,
// incomming instances // incomming instances
vec_instances: Vec<CommittedInstance<C>>, vec_instances: Vec<CommittedInstance<C>>,
vec_w: Vec<Witness<C>>, vec_w: Vec<Witness<C>>,
) -> (
Vec<C::ScalarField>,
Vec<C::ScalarField>,
CommittedInstance<C>,
Witness<C>,
) { ) {
let t = instance.betas.len(); let t = instance.betas.len();
let n = r1cs.A[0].len(); let n = r1cs.A[0].len();
// TODO initialize transcript
let delta = tr.get_challenge(); let delta = tr.get_challenge();
let deltas = powers_of_beta(delta, t); let deltas = powers_of_beta(delta, t);
let f_w = eval_f(&r1cs, &w.w); let f_w = eval_f(&r1cs, &w.w);
dbg!(w.w.len());
dbg!(f_w.len());
dbg!(n);
// println!("is f(w) {:?}", f_w);
// F(X) // F(X)
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero(); let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
@ -65,9 +72,12 @@ where
let curr = &lhs * f_w[i]; let curr = &lhs * f_w[i];
F_X = F_X.add(curr); F_X = F_X.add(curr);
} }
// TODO return F(X)
let F_X_dense = DensePolynomial::from(F_X.clone());
tr.add_vec(&F_X_dense.coeffs);
let alpha = tr.get_challenge(); let alpha = tr.get_challenge();
// eval F(alpha) // eval F(alpha)
let F_alpha = F_X.evaluate(&alpha); let F_alpha = F_X.evaluate(&alpha);
@ -89,12 +99,122 @@ where
assert!(check_instance( assert!(check_instance(
r1cs, r1cs,
CommittedInstance { CommittedInstance {
phi: instance.phi,
betas: betas_star,
phi: instance.phi.clone(),
betas: betas_star.clone(),
e: F_alpha, e: F_alpha,
}, },
w.clone(), w.clone(),
)); ));
let gamma = tr.get_challenge();
// TODO WIP compute G(X) & K(X)
let G_evals: Vec<C::ScalarField> = vec![C::ScalarField::zero(); n];
let G_X: DensePolynomial<C::ScalarField> =
Evaluations::<C::ScalarField>::from_vec_and_domain(G_evals.clone(), H).interpolate();
// dbg!(&G_X);
let (K_X, remainder) = G_X.divide_by_vanishing_poly(H).unwrap();
// dbg!(&K_X);
assert!(remainder.is_zero());
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
for i in 0..k {
phi_star += vec_instances[i].phi.0 * L_X[i].evaluate(&gamma);
}
let mut w_star: Vec<C::ScalarField> = vec_scalar_mul(&w.w, &L_X[0].evaluate(&gamma));
for i in 0..k {
w_star = vec_add(
&w_star,
&vec_scalar_mul(&vec_w[i].w, &L_X[i].evaluate(&gamma)),
);
}
(
F_X_dense.coeffs,
K_X.coeffs,
CommittedInstance {
betas: betas_star,
phi: Commitment(phi_star),
e: e_star,
},
Witness {
w: w_star,
r_w: w.r_w,
},
)
}
pub fn verifier(
tr: &mut Transcript<C::ScalarField, C>,
pedersen_params: &PedersenParams<C>,
r1cs: R1CS<C::ScalarField>,
// running instance
instance: CommittedInstance<C>,
// incomming instances
vec_instances: Vec<CommittedInstance<C>>,
// polys from P
F_coeffs: Vec<C::ScalarField>,
K_coeffs: Vec<C::ScalarField>,
) -> CommittedInstance<C> {
let t = instance.betas.len();
let n = r1cs.A[0].len();
let delta = tr.get_challenge();
let deltas = powers_of_beta(delta, t);
tr.add_vec(&F_coeffs);
let alpha = tr.get_challenge();
let alphas = all_powers(alpha, n);
// dbg!(instance.e);
// dbg!(F_coeffs[0]);
// F(alpha) = e + \sum_t F_i * alpha^i
let mut F_alpha = instance.e;
for (i, F_i) in F_coeffs.iter().enumerate() {
F_alpha += *F_i * alphas[i];
}
let betas_star: Vec<C::ScalarField> = instance
.betas
.iter()
.zip(
deltas
.iter()
.map(|delta_i| alpha * delta_i)
.collect::<Vec<C::ScalarField>>(),
)
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
.collect();
let gamma = tr.get_challenge();
let k = vec_instances.len();
let domain_k = GeneralEvaluationDomain::<C::ScalarField>::new(k).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(domain_k);
let Z_X: DensePolynomial<C::ScalarField> = domain_k.vanishing_polynomial().into();
let K_X: DensePolynomial<C::ScalarField> =
DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs);
let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
for i in 0..k {
phi_star += vec_instances[i].phi.0 * L_X[i].evaluate(&gamma);
}
// return the folded instance
CommittedInstance {
betas: betas_star,
phi: Commitment(phi_star),
e: e_star,
}
} }
} }
@ -134,6 +254,19 @@ fn pow_i_over_x(i: usize, betas: &Vec, deltas: &Vec) -> Spa
r r
} }
// method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
for i in 0..domain_n.size() {
let evals: Vec<F> = cfg_into_iter!(0..domain_n.size())
.map(|k| if k == i { F::one() } else { F::zero() })
.collect();
lagrange_polynomials.push(Evaluations::from_vec_and_domain(evals, domain_n).interpolate());
}
lagrange_polynomials
}
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct R1CS<F: PrimeField> { pub struct R1CS<F: PrimeField> {
pub A: Vec<Vec<F>>, pub A: Vec<Vec<F>>,
@ -150,7 +283,7 @@ fn eval_f(r1cs: &R1CS, w: &Vec) -> Vec {
} }
fn check_instance<C: CurveGroup>( fn check_instance<C: CurveGroup>(
r1cs: R1CS<C::ScalarField>,
r1cs: &R1CS<C::ScalarField>,
instance: CommittedInstance<C>, instance: CommittedInstance<C>,
w: Witness<C>, w: Witness<C>,
) -> bool { ) -> bool {
@ -298,16 +431,24 @@ mod tests {
} }
#[test] #[test]
fn test_fold_prover() {
fn test_fold() {
let mut rng = ark_std::test_rng(); let mut rng = ark_std::test_rng();
let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
let poseidon_config = poseidon_test_config::<Fr>(); let poseidon_config = poseidon_test_config::<Fr>();
let k = 5;
let r1cs = get_test_r1cs::<Fr>(); let r1cs = get_test_r1cs::<Fr>();
let mut z = get_test_z::<Fr>(3); let mut z = get_test_z::<Fr>(3);
let mut zs: Vec<Vec<Fr>> = Vec::new();
for i in 0..k {
let z_i = get_test_z::<Fr>(i + 4);
zs.push(z_i);
}
// init Prover's transcript
// init Prover & Verifier's transcript
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config); let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let n = z.len(); let n = z.len();
let t = log2(n) as usize; let t = log2(n) as usize;
@ -318,24 +459,60 @@ mod tests {
let betas = powers_of_beta(beta, t); let betas = powers_of_beta(beta, t);
let witness = Witness::<G1Projective> { let witness = Witness::<G1Projective> {
w: z, // WIP
w: z.clone(), // WIP
r_w: Fr::rand(&mut rng), r_w: Fr::rand(&mut rng),
}; };
let phi = Pedersen::<G1Projective>::commit(&pedersen_params, &witness.w, &witness.r_w); let phi = Pedersen::<G1Projective>::commit(&pedersen_params, &witness.w, &witness.r_w);
let instance = CommittedInstance::<G1Projective> { let instance = CommittedInstance::<G1Projective> {
phi, phi,
betas,
betas: betas.clone(),
e: Fr::zero(), e: Fr::zero(),
}; };
// same for the other instances
let mut witnesses: Vec<Witness<G1Projective>> = Vec::new();
let mut instances: Vec<CommittedInstance<G1Projective>> = Vec::new();
for i in 0..k {
let witness_i = Witness::<G1Projective> {
w: zs[i].clone(), // WIP
r_w: Fr::rand(&mut rng),
};
let phi_i =
Pedersen::<G1Projective>::commit(&pedersen_params, &witness_i.w, &witness_i.r_w);
let instance_i = CommittedInstance::<G1Projective> {
phi: phi_i,
betas: betas.clone(),
e: Fr::zero(),
};
witnesses.push(witness_i);
instances.push(instance_i);
}
Folding::<G1Projective>::prover(
let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover(
&mut transcript_p, &mut transcript_p,
&pedersen_params, &pedersen_params,
r1cs,
instance,
&r1cs,
instance.clone(),
witness, witness,
Vec::new(),
Vec::new(),
instances.clone(),
witnesses,
); );
dbg!(&F_coeffs);
// veriier
let folded_instance_v = Folding::<G1Projective>::verifier(
&mut transcript_v,
&pedersen_params,
r1cs.clone(), // TODO rm clone do borrow
instance,
instances,
F_coeffs,
K_coeffs,
);
assert_eq!(folded_instance.phi.0, folded_instance_v.phi.0);
assert_eq!(folded_instance.betas, folded_instance_v.betas);
assert_eq!(folded_instance.e, folded_instance_v.e);
// assert!(check_instance(&r1cs, folded_instance, folded_witness));
} }
} }

Loading…
Cancel
Save