Browse Source

implement K(X) & G(X) computation. Folding works

- implement G(X) & K(X) computation
- update e* and phi* usage of L_i(X)
- extend readme.md

with this commit, prover & verifier folding works, and outputed
instances satisfy the relation check.
main
arnaucube 1 year ago
parent
commit
f9591ecd63
6 changed files with 191 additions and 77 deletions
  1. +73
    -0
      README.md
  2. +2
    -2
      src/lib.rs
  3. +1
    -1
      src/pedersen.rs
  4. +111
    -70
      src/protogalaxy.rs
  5. +1
    -1
      src/transcript.rs
  6. +3
    -3
      src/utils.rs

+ 73
- 0
README.md

@ -5,3 +5,76 @@ Proof of concept implementation of ProtoGalaxy (https://eprint.iacr.org/2023/110
> Do not use in production.
Thanks to [Liam Eagen](https://twitter.com/LiamEagen) and [Ariel Gabizon](https://twitter.com/rel_zeta_tech) for their kind explanations.
This code has been done in the context of the research on folding schemes in [0xPARC](https://0xparc.org).
![protogalaxy img from Wikipedia](https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Stellar_Fireworks_Finale.jpg/303px-Stellar_Fireworks_Finale.jpg)
(img: protogalaxies colliding, [from Wikipedia](https://en.wikipedia.org/wiki/File:Stellar_Fireworks_Finale.jpg))
## Details
Implementation of ProtoGalaxy's scheme described in section 4 of the paper.
Current version implements the folding on prover & verifier and it works, but it is not optimized.
Next steps in terms of implementation include: F(X) O(n) construction following Claim 4.4, compute K(X) in O(kd log(kd)M + ndkC) as described in Claim 4.5, add tests folding in multiple iterations and also in a tree approach, add the decider and integrate with some existing R1CS tooling for the R1CS & witness generation.
### Usage
Example of folding k+1 instances:
```rust
// assume we have:
// an R1CS instance 'r1cs'
// a valid witness 'w' from our running instance
// k valid 'witnesses' to be fold
// compute the committed instance for our running witness
let phi = Pedersen::<G1Projective>::commit(&pedersen_params, &witness.w, &witness.r_w);
let instance = CommittedInstance::<G1Projective> {
phi,
betas: betas.clone(),
e: Fr::zero(),
};
// compute the k committed instances to be fold
let mut instances: Vec<CommittedInstance<G1Projective>> = Vec::new();
for i in 0..k {
let phi_i =
Pedersen::<G1Projective>::commit(&pedersen_params, &witnesses[i].w, &witnesses[i].r_w);
let instance_i = CommittedInstance::<G1Projective> {
phi: phi_i,
betas: betas.clone(),
e: Fr::zero(),
};
witnesses.push(witness_i);
instances.push(instance_i);
}
// set the initial random betas
let beta = Fr::rand(&mut rng);
let betas = powers_of_beta(beta, t);
// Prover folds the instances and witnesses
let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover(
&mut transcript_p,
&r1cs,
instance.clone(),
witness,
instances.clone(),
witnesses,
);
// verifier folds the instances
let folded_instance_v = Folding::<G1Projective>::verifier(
&mut transcript_v,
&r1cs,
instance,
instances,
F_coeffs,
K_coeffs,
);
// check that the folded instance satisfies the relation
assert!(check_instance(&r2cs, folded_instance, folded_witness));
```
(see the actual code for more details)

+ 2
- 2
src/lib.rs

@ -1,7 +1,7 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(unused)] // TMP
#![allow(dead_code)] // TMP
// #![allow(unused)] // TMP
// #![allow(dead_code)] // TMP
pub mod pedersen;
pub mod protogalaxy;

+ 1
- 1
src/pedersen.rs

@ -1,4 +1,4 @@
/// pedersen.rs file and adapted from https://github.com/arnaucube/nova-study
/// pedersen.rs file adapted from https://github.com/arnaucube/nova-study
use ark_ec::{CurveGroup, Group};
use ark_std::{
rand::{Rng, RngCore},

+ 111
- 70
src/protogalaxy.rs

@ -2,17 +2,16 @@ use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::fields::PrimeField;
use ark_std::log2;
use ark_std::{cfg_into_iter, One, Zero};
use ark_std::{cfg_into_iter, Zero};
use std::marker::PhantomData;
use std::ops::{Add, Mul};
use std::ops::Add;
use ark_ff::{batch_inversion, FftField};
use ark_poly::{
univariate::{DensePolynomial, SparsePolynomial},
DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
};
use crate::pedersen::{Commitment, Params as PedersenParams, Pedersen, Proof as PedersenProof};
use crate::pedersen::Commitment;
use crate::transcript::Transcript;
use crate::utils::*;
@ -40,8 +39,7 @@ where
{
// WIP naming of functions
pub fn prover(
tr: &mut Transcript<C::ScalarField, C>,
pedersen_params: &PedersenParams<C>,
transcript: &mut Transcript<C::ScalarField, C>,
r1cs: &R1CS<C::ScalarField>,
// running instance
instance: CommittedInstance<C>,
@ -57,13 +55,14 @@ where
) {
let t = instance.betas.len();
let n = r1cs.A[0].len();
assert_eq!(w.w.len(), n);
assert_eq!(log2(n) as usize, t);
// TODO initialize transcript
let delta = tr.get_challenge();
let delta = transcript.get_challenge();
let deltas = powers_of_beta(delta, t);
let f_w = eval_f(&r1cs, &w.w);
// println!("is f(w) {:?}", f_w);
let f_w = eval_f(r1cs, &w.w);
// F(X)
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
@ -74,9 +73,9 @@ where
}
let F_X_dense = DensePolynomial::from(F_X.clone());
tr.add_vec(&F_X_dense.coeffs);
transcript.add_vec(&F_X_dense.coeffs);
let alpha = tr.get_challenge();
let alpha = transcript.get_challenge();
// eval F(alpha)
let F_alpha = F_X.evaluate(&alpha);
@ -106,31 +105,78 @@ where
w.clone(),
));
let gamma = tr.get_challenge();
let gamma = transcript.get_challenge();
// TODO WIP compute G(X) & K(X)
let G_evals: Vec<C::ScalarField> = vec![C::ScalarField::zero(); n];
let G_X: DensePolynomial<C::ScalarField> =
Evaluations::<C::ScalarField>::from_vec_and_domain(G_evals.clone(), H).interpolate();
// dbg!(&G_X);
let (K_X, remainder) = G_X.divide_by_vanishing_poly(H).unwrap();
// dbg!(&K_X);
assert!(remainder.is_zero());
let mut ws: Vec<Vec<C::ScalarField>> = Vec::new();
ws.push(w.w.clone());
for wj in vec_w.iter() {
assert_eq!(wj.w.len(), n);
ws.push(wj.w.clone());
}
let k = vec_instances.len();
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
let EH = GeneralEvaluationDomain::<C::ScalarField>::new(t * k + 1).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
// K(X) computation in a naive way, next iterations will compute K(X) as described in Claim
// 4.5 of the paper.
let mut G_evals: Vec<C::ScalarField> = vec![C::ScalarField::zero(); EH.size()];
for (hi, h) in EH.elements().enumerate() {
// each iteration evaluates G(h)
// inner = L_0(x) * w + \sum_k L_i(x) * w_j
let mut inner: Vec<C::ScalarField> = vec![C::ScalarField::zero(); ws[0].len()];
for (i, w) in ws.iter().enumerate() {
// Li_w = Li(X) * wj
let mut Li_w: Vec<DensePolynomial<C::ScalarField>> =
vec![DensePolynomial::<C::ScalarField>::zero(); w.len()];
for (j, wj) in w.iter().enumerate() {
let Li_wj = &L_X[i] * *wj;
Li_w[j] = Li_wj;
}
// Li_w_h = Li_w(h) = Li(h) * wj
let mut Liw_h: Vec<C::ScalarField> = vec![C::ScalarField::zero(); w.len()];
for (j, _) in Li_w.iter().enumerate() {
Liw_h[j] = Li_w[j].evaluate(&h);
}
for j in 0..inner.len() {
inner[j] += Liw_h[j];
}
}
let f_ev = eval_f(r1cs, &inner);
let mut Gsum = C::ScalarField::zero();
for i in 0..n {
let pow_i_betas = pow_i(i, &betas_star);
let curr = pow_i_betas * f_ev[i];
Gsum += curr;
}
// G_evals[hi] = Gsum / Z_X.evaluate(&h); // WIP
G_evals[hi] = Gsum;
}
let G_X: DensePolynomial<C::ScalarField> =
Evaluations::<C::ScalarField>::from_vec_and_domain(G_evals.clone(), EH).interpolate();
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
// K(X) = (G(X)- F(alpha)*L_0(X)) / Z(X)
let L0_e = &L_X[0] * F_alpha; // L0(X)*F(a) will be 0 in the native case
let G_L0e = &G_X - &L0_e;
// TODO move division by Z_X to the prev loop
let (K_X, remainder) = G_L0e.divide_by_vanishing_poly(H).unwrap();
assert!(remainder.is_zero());
let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
for i in 0..k {
phi_star += vec_instances[i].phi.0 * L_X[i].evaluate(&gamma);
phi_star += vec_instances[i].phi.0 * L_X[i + 1].evaluate(&gamma);
}
let mut w_star: Vec<C::ScalarField> = vec_scalar_mul(&w.w, &L_X[0].evaluate(&gamma));
for i in 0..k {
w_star = vec_add(
&w_star,
&vec_scalar_mul(&vec_w[i].w, &L_X[i].evaluate(&gamma)),
&vec_scalar_mul(&vec_w[i].w, &L_X[i + 1].evaluate(&gamma)),
);
}
@ -144,15 +190,14 @@ where
},
Witness {
w: w_star,
r_w: w.r_w,
r_w: w.r_w, // wip, fold also r_w (blinding used for the w commitment)
},
)
}
pub fn verifier(
tr: &mut Transcript<C::ScalarField, C>,
pedersen_params: &PedersenParams<C>,
r1cs: R1CS<C::ScalarField>,
transcript: &mut Transcript<C::ScalarField, C>,
r1cs: &R1CS<C::ScalarField>,
// running instance
instance: CommittedInstance<C>,
// incomming instances
@ -164,17 +209,14 @@ where
let t = instance.betas.len();
let n = r1cs.A[0].len();
let delta = tr.get_challenge();
let delta = transcript.get_challenge();
let deltas = powers_of_beta(delta, t);
tr.add_vec(&F_coeffs);
transcript.add_vec(&F_coeffs);
let alpha = tr.get_challenge();
let alpha = transcript.get_challenge();
let alphas = all_powers(alpha, n);
// dbg!(instance.e);
// dbg!(F_coeffs[0]);
// F(alpha) = e + \sum_t F_i * alpha^i
let mut F_alpha = instance.e;
for (i, F_i) in F_coeffs.iter().enumerate() {
@ -193,20 +235,21 @@ where
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
.collect();
let gamma = tr.get_challenge();
let gamma = transcript.get_challenge();
let k = vec_instances.len();
let domain_k = GeneralEvaluationDomain::<C::ScalarField>::new(k).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(domain_k);
let Z_X: DensePolynomial<C::ScalarField> = domain_k.vanishing_polynomial().into();
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
let K_X: DensePolynomial<C::ScalarField> =
DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs);
let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
for i in 0..k {
phi_star += vec_instances[i].phi.0 * L_X[i].evaluate(&gamma);
phi_star += vec_instances[i].phi.0 * L_X[i + 1].evaluate(&gamma);
}
// return the folded instance
@ -226,12 +269,12 @@ fn pow_i(i: usize, betas: &Vec) -> F {
let b = bit_decompose(i as u64, n as usize);
let mut r: F = F::one();
for (j, beta_i) in betas.iter().enumerate() {
for (j, beta_j) in betas.iter().enumerate() {
let mut b_j = F::zero();
if b[j] {
b_j = F::one();
}
r *= (F::one() - b_j) + b_j * betas[j];
r *= (F::one() - b_j) + b_j * beta_j;
}
r
}
@ -244,20 +287,19 @@ fn pow_i_over_x(i: usize, betas: &Vec, deltas: &Vec) -> Spa
let mut r: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
for (j, beta_i) in betas.iter().enumerate() {
for (j, beta_j) in betas.iter().enumerate() {
if b[j] {
let curr: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, betas[j]), (1, deltas[j])]);
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
r = r.mul(&curr);
}
}
r
}
// method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
for i in 0..domain_n.size() {
let evals: Vec<F> = cfg_into_iter!(0..domain_n.size())
.map(|k| if k == i { F::one() } else { F::zero() })
@ -275,11 +317,10 @@ pub struct R1CS {
}
// f(w) in R1CS context
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &Vec<F>) -> Vec<F> {
let AzBz = hadamard(&mat_vec_mul(&r1cs.A, &w), &mat_vec_mul(&r1cs.B, &w));
let Cz = mat_vec_mul(&r1cs.C, &w);
let f_w = vec_sub(&AzBz, &Cz);
f_w
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &[F]) -> Vec<F> {
let AzBz = hadamard(&mat_vec_mul(&r1cs.A, w), &mat_vec_mul(&r1cs.B, w));
let Cz = mat_vec_mul(&r1cs.C, w);
vec_sub(&AzBz, &Cz)
}
fn check_instance<C: CurveGroup>(
@ -288,11 +329,8 @@ fn check_instance(
w: Witness<C>,
) -> bool {
let n = 2_u64.pow(instance.betas.len() as u32) as usize;
dbg!(n);
dbg!(w.w.len());
let f_w = eval_f(&r1cs, &w.w); // f(w)
dbg!(f_w.len());
let f_w = eval_f(r1cs, &w.w); // f(w)
let mut r = C::ScalarField::zero();
for i in 0..n {
@ -310,7 +348,6 @@ mod tests {
use crate::pedersen::Pedersen;
use crate::transcript::poseidon_test_config;
use ark_bls12_381::{Fr, G1Projective};
use ark_std::One;
use ark_std::UniformRand;
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
@ -405,16 +442,22 @@ mod tests {
let mut rng = ark_std::test_rng();
let t = 3;
let n = 8;
// let beta = Fr::rand(&mut rng);
// let delta = Fr::rand(&mut rng);
let beta = Fr::from(3);
let delta = Fr::from(5);
let beta = Fr::rand(&mut rng);
let delta = Fr::rand(&mut rng);
let betas = powers_of_beta(beta, t);
let deltas = powers_of_beta(delta, t);
// for i in 0..n {
// dbg!(pow_i_over_x(i, &betas, &deltas));
// }
// compute b + X*d, with X=rand
let x = Fr::rand(&mut rng);
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x));
// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
// vector [betas+X*deltas] and then computing pow_i over it
for i in 0..n {
let pow_i1 = pow_i_over_x(i, &betas, &deltas);
let pow_i2 = pow_i(i, &bxd);
assert_eq!(pow_i1.evaluate(&x), pow_i2);
}
}
#[test]
@ -431,15 +474,15 @@ mod tests {
}
#[test]
fn test_fold() {
fn test_fold_native_case() {
let mut rng = ark_std::test_rng();
let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
let poseidon_config = poseidon_test_config::<Fr>();
let k = 5;
let k = 6;
let r1cs = get_test_r1cs::<Fr>();
let mut z = get_test_z::<Fr>(3);
let z = get_test_z::<Fr>(3);
let mut zs: Vec<Vec<Fr>> = Vec::new();
for i in 0..k {
let z_i = get_test_z::<Fr>(i + 4);
@ -452,8 +495,6 @@ mod tests {
let n = z.len();
let t = log2(n) as usize;
dbg!(n);
dbg!(t);
let beta = Fr::rand(&mut rng);
let betas = powers_of_beta(beta, t);
@ -489,30 +530,30 @@ mod tests {
let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover(
&mut transcript_p,
&pedersen_params,
&r1cs,
instance.clone(),
witness,
instances.clone(),
witnesses,
);
dbg!(&F_coeffs);
// veriier
let folded_instance_v = Folding::<G1Projective>::verifier(
&mut transcript_v,
&pedersen_params,
r1cs.clone(), // TODO rm clone do borrow
&r1cs,
instance,
instances,
F_coeffs,
K_coeffs,
);
// check that prover & verifier folded instances are the same values
assert_eq!(folded_instance.phi.0, folded_instance_v.phi.0);
assert_eq!(folded_instance.betas, folded_instance_v.betas);
assert_eq!(folded_instance.e, folded_instance_v.e);
assert!(!folded_instance.e.is_zero());
// assert!(check_instance(&r1cs, folded_instance, folded_witness));
// check that the folded instance satisfies the relation
assert!(check_instance(&r1cs, folded_instance, folded_witness));
}
}

+ 1
- 1
src/transcript.rs

@ -1,4 +1,4 @@
/// transcript.rs file and adapted from https://github.com/arnaucube/nova-study
/// transcript.rs file adapted from https://github.com/arnaucube/nova-study
use ark_ec::{AffineRepr, CurveGroup};
use ark_ff::PrimeField;
use std::marker::PhantomData;

+ 3
- 3
src/utils.rs

@ -1,7 +1,7 @@
use ark_ff::fields::PrimeField;
use ark_std::cfg_iter;
pub fn vec_add<F: PrimeField>(a: &Vec<F>, b: &[F]) -> Vec<F> {
pub fn vec_add<F: PrimeField>(a: &[F], b: &[F]) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); a.len()];
for i in 0..a.len() {
r[i] = a[i] + b[i];
@ -9,7 +9,7 @@ pub fn vec_add(a: &Vec, b: &[F]) -> Vec {
r
}
pub fn vec_sub<F: PrimeField>(a: &Vec<F>, b: &Vec<F>) -> Vec<F> {
pub fn vec_sub<F: PrimeField>(a: &[F], b: &[F]) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); a.len()];
for i in 0..a.len() {
r[i] = a[i] - b[i];
@ -45,7 +45,7 @@ pub fn mat_vec_mul(M: &Vec>, z: &[F]) -> Vec {
r
}
pub fn hadamard<F: PrimeField>(a: &Vec<F>, b: &Vec<F>) -> Vec<F> {
pub fn hadamard<F: PrimeField>(a: &[F], b: &[F]) -> Vec<F> {
cfg_iter!(a).zip(b).map(|(a, b)| *a * b).collect()
}

Loading…
Cancel
Save