You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

246 lines
6.7 KiB

use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::fields::PrimeField;
use ark_std::log2;
use ark_std::{One, Zero};
use std::marker::PhantomData;
use std::ops::Add;
use ark_poly::{univariate::SparsePolynomial, Polynomial};
use crate::pedersen::{Commitment, Params as PedersenParams, Pedersen, Proof as PedersenProof};
use crate::transcript::Transcript;
use crate::utils::*;
#[derive(Clone, Debug)]
pub struct CommittedInstance<C: CurveGroup> {
phi: Commitment<C>,
betas: Vec<C::ScalarField>,
e: C::ScalarField,
}
#[derive(Clone, Debug)]
pub struct Witness<C: CurveGroup> {
w: Vec<C::ScalarField>,
r_w: C::ScalarField,
}
#[derive(Clone, Debug)]
pub struct Folding<C: CurveGroup> {
_phantom: PhantomData<C>,
}
impl<C: CurveGroup> Folding<C>
where
<C as Group>::ScalarField: Absorb,
<C as CurveGroup>::BaseField: Absorb,
{
// WIP naming of functions
pub fn prover(
tr: &mut Transcript<C::ScalarField, C>,
pedersen_params: &PedersenParams<C>,
r1cs: R1CS<C::ScalarField>,
// running instance
instance: CommittedInstance<C>,
w: Vec<C::ScalarField>,
// incomming instances
vec_instances: Vec<CommittedInstance<C>>,
vec_w: Vec<C::ScalarField>,
) {
let t = instance.betas.len();
let n = w.len();
let delta = tr.get_challenge();
let deltas = powers_of_beta(delta, t);
let f_w = eval_f(&r1cs, &w);
// F(X)
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
for i in 0..n {
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas);
F_X = F_X.add(&lhs * f_w[i]);
}
// TODO return F(X)
let alpha = tr.get_challenge();
// WIP
}
}
// naive impl of pow_i for betas, assuming that betas=(b, b^2, b^4, ..., b^{2^{t-1}})
fn pow_i<F: PrimeField>(i: usize, betas: &Vec<F>) -> F {
// WIP check if makes more sense to do it with ifs instead of arithmetic
let n = 2_u64.pow(betas.len() as u32);
let b = bit_decompose(i as u64, n as usize);
let mut r: F = F::one();
for (j, beta_i) in betas.iter().enumerate() {
let mut b_j = F::zero();
if b[j] {
b_j = F::one();
}
r *= (F::one() - b_j) + b_j * betas[j];
}
r
}
fn pow_i_over_x<F: PrimeField>(i: usize, betas: &Vec<F>, deltas: &Vec<F>) -> SparsePolynomial<F> {
assert_eq!(betas.len(), deltas.len());
let n = 2_u64.pow(betas.len() as u32);
let b = bit_decompose(i as u64, n as usize);
let mut r: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
for (j, beta_i) in betas.iter().enumerate() {
if b[j] {
let curr: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, betas[j]), (1, deltas[j])]);
r = r.mul(&curr);
}
}
r
}
#[derive(Clone, Debug)]
pub struct R1CS<F: PrimeField> {
pub A: Vec<Vec<F>>,
pub B: Vec<Vec<F>>,
pub C: Vec<Vec<F>>,
}
// f(w) in R1CS context
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &Vec<F>) -> Vec<F> {
let AzBz = hadamard(&mat_vec_mul(&r1cs.A, &w), &mat_vec_mul(&r1cs.B, &w));
let Cz = mat_vec_mul(&r1cs.C, &w);
let f_w = vec_sub(&AzBz, &Cz);
f_w
}
fn check_instance<C: CurveGroup>(
r1cs: R1CS<C::ScalarField>,
instance: CommittedInstance<C>,
w: Witness<C>,
) -> bool {
let n = 2_u64.pow(instance.betas.len() as u32) as usize;
let f_w = eval_f(&r1cs, &w.w); // f(w)
let mut r = C::ScalarField::zero();
for i in 0..n {
r += pow_i(i, &instance.betas) * f_w[i];
}
false
}
#[cfg(test)]
mod tests {
use super::*;
use crate::pedersen::Pedersen;
use crate::transcript::poseidon_test_config;
use ark_bls12_381::{Fr, G1Projective};
use ark_std::One;
use ark_std::UniformRand;
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
for i in 0..M.len() {
R[i] = vec![F::zero(); M[i].len()];
for j in 0..M[i].len() {
R[i][j] = F::from(M[i][j] as u64);
}
}
R
}
pub fn to_F_vec<F: PrimeField>(z: Vec<usize>) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); z.len()];
for i in 0..z.len() {
r[i] = F::from(z[i] as u64);
}
r
}
pub fn get_test_r1cs<F: PrimeField>() -> R1CS<F> {
// R1CS for: x^3 + x + 5 = y (example from article
// https://www.vitalik.ca/general/2016/12/10/qap.html )
let A = to_F_matrix::<F>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 0, 0, 1, 0, 0],
vec![0, 1, 0, 0, 1, 0],
vec![5, 0, 0, 0, 0, 1],
]);
let B = to_F_matrix::<F>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 1, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
]);
let C = to_F_matrix::<F>(vec![
vec![0, 0, 0, 1, 0, 0],
vec![0, 0, 0, 0, 1, 0],
vec![0, 0, 0, 0, 0, 1],
vec![0, 0, 1, 0, 0, 0],
]);
let r1cs = R1CS::<F> { A, B, C };
r1cs
}
pub fn get_test_z<F: PrimeField>(input: usize) -> Vec<F> {
// z = (1, io, w)
to_F_vec(vec![
1,
input,
input * input * input + input + 5, // x^3 + x + 5
input * input, // x^2
input * input * input, // x^2 * x
input * input * input + input, // x^3 + x
])
}
#[test]
fn test_pow_i() {
let mut rng = ark_std::test_rng();
let t = 4;
let n = 16;
let beta = Fr::rand(&mut rng);
let betas = powers_of_beta(beta, t);
let not_betas = all_powers(beta, n);
for i in 0..n {
assert_eq!(pow_i(i, &betas), not_betas[i]);
}
}
#[test]
fn test_pow_i_over_x() {
let mut rng = ark_std::test_rng();
let t = 3;
let n = 8;
// let beta = Fr::rand(&mut rng);
// let delta = Fr::rand(&mut rng);
let beta = Fr::from(3);
let delta = Fr::from(5);
let betas = powers_of_beta(beta, t);
let deltas = powers_of_beta(delta, t);
// for i in 0..n {
// dbg!(pow_i_over_x(i, &betas, &deltas));
// }
}
#[test]
fn test_eval_f() {
let r1cs = get_test_r1cs::<Fr>();
let mut z = get_test_z::<Fr>(3);
let f_w = eval_f(&r1cs, &z);
assert!(is_zero_vec(&f_w));
z[1] = Fr::from(111);
let f_w = eval_f(&r1cs, &z);
assert!(!is_zero_vec(&f_w));
}
}