use ark_crypto_primitives::sponge::Absorb;
|
|
use ark_ec::{CurveGroup, Group};
|
|
use ark_ff::fields::PrimeField;
|
|
use ark_std::log2;
|
|
use ark_std::{cfg_into_iter, Zero};
|
|
use std::marker::PhantomData;
|
|
use std::ops::Add;
|
|
|
|
use ark_poly::{
|
|
univariate::{DensePolynomial, SparsePolynomial},
|
|
DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
|
|
};
|
|
|
|
use crate::pedersen::Commitment;
|
|
use crate::transcript::Transcript;
|
|
use crate::utils::*;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct CommittedInstance<C: CurveGroup> {
|
|
phi: Commitment<C>,
|
|
betas: Vec<C::ScalarField>,
|
|
e: C::ScalarField,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Witness<C: CurveGroup> {
|
|
w: Vec<C::ScalarField>,
|
|
r_w: C::ScalarField,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Folding<C: CurveGroup> {
|
|
_phantom: PhantomData<C>,
|
|
}
|
|
impl<C: CurveGroup> Folding<C>
|
|
where
|
|
<C as Group>::ScalarField: Absorb,
|
|
<C as CurveGroup>::BaseField: Absorb,
|
|
{
|
|
// WIP naming of functions
|
|
pub fn prover(
|
|
transcript: &mut Transcript<C::ScalarField, C>,
|
|
r1cs: &R1CS<C::ScalarField>,
|
|
// running instance
|
|
instance: CommittedInstance<C>,
|
|
w: Witness<C>,
|
|
// incomming instances
|
|
vec_instances: Vec<CommittedInstance<C>>,
|
|
vec_w: Vec<Witness<C>>,
|
|
) -> (
|
|
Vec<C::ScalarField>,
|
|
Vec<C::ScalarField>,
|
|
CommittedInstance<C>,
|
|
Witness<C>,
|
|
) {
|
|
let t = instance.betas.len();
|
|
let n = r1cs.A[0].len();
|
|
assert_eq!(w.w.len(), n);
|
|
assert_eq!(log2(n) as usize, t);
|
|
|
|
// TODO initialize transcript
|
|
let delta = transcript.get_challenge();
|
|
let deltas = powers_of_beta(delta, t);
|
|
|
|
let f_w = eval_f(r1cs, &w.w);
|
|
|
|
// F(X)
|
|
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
|
|
for i in 0..n {
|
|
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas);
|
|
let curr = &lhs * f_w[i];
|
|
F_X = F_X.add(curr);
|
|
}
|
|
|
|
let F_X_dense = DensePolynomial::from(F_X.clone());
|
|
transcript.add_vec(&F_X_dense.coeffs);
|
|
|
|
let alpha = transcript.get_challenge();
|
|
|
|
// eval F(alpha)
|
|
let F_alpha = F_X.evaluate(&alpha);
|
|
|
|
// betas*
|
|
let betas_star: Vec<C::ScalarField> = instance
|
|
.betas
|
|
.iter()
|
|
.zip(
|
|
deltas
|
|
.iter()
|
|
.map(|delta_i| alpha * delta_i)
|
|
.collect::<Vec<C::ScalarField>>(),
|
|
)
|
|
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
|
|
.collect();
|
|
|
|
// sanity check: check that the new randomized instnace (the original instance but with
|
|
// 'refreshed' randomness) satisfies the relation.
|
|
assert!(check_instance(
|
|
r1cs,
|
|
&CommittedInstance {
|
|
phi: instance.phi.clone(),
|
|
betas: betas_star.clone(),
|
|
e: F_alpha,
|
|
},
|
|
&w,
|
|
));
|
|
|
|
let mut ws: Vec<Vec<C::ScalarField>> = Vec::new();
|
|
ws.push(w.w.clone());
|
|
for wj in vec_w.iter() {
|
|
assert_eq!(wj.w.len(), n);
|
|
ws.push(wj.w.clone());
|
|
}
|
|
|
|
let k = vec_instances.len();
|
|
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
|
|
// WIP review t/d
|
|
let EH = GeneralEvaluationDomain::<C::ScalarField>::new(t * k + 1).unwrap();
|
|
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
|
|
|
|
// K(X) computation in a naive way, next iterations will compute K(X) as described in Claim
|
|
// 4.5 of the paper.
|
|
let mut G_evals: Vec<C::ScalarField> = vec![C::ScalarField::zero(); EH.size()];
|
|
for (hi, h) in EH.elements().enumerate() {
|
|
// each iteration evaluates G(h)
|
|
// inner = L_0(x) * w + \sum_k L_i(x) * w_j
|
|
let mut inner: Vec<C::ScalarField> = vec![C::ScalarField::zero(); ws[0].len()];
|
|
for (i, w) in ws.iter().enumerate() {
|
|
// Li_w = Li(X) * wj
|
|
let mut Li_w: Vec<DensePolynomial<C::ScalarField>> =
|
|
vec![DensePolynomial::<C::ScalarField>::zero(); w.len()];
|
|
for (j, wj) in w.iter().enumerate() {
|
|
let Li_wj = &L_X[i] * *wj;
|
|
Li_w[j] = Li_wj;
|
|
}
|
|
// Li_w_h = Li_w(h) = Li(h) * wj
|
|
let mut Liw_h: Vec<C::ScalarField> = vec![C::ScalarField::zero(); w.len()];
|
|
for (j, _) in Li_w.iter().enumerate() {
|
|
Liw_h[j] = Li_w[j].evaluate(&h);
|
|
}
|
|
|
|
for j in 0..inner.len() {
|
|
inner[j] += Liw_h[j];
|
|
}
|
|
}
|
|
let f_ev = eval_f(r1cs, &inner);
|
|
|
|
let mut Gsum = C::ScalarField::zero();
|
|
for i in 0..n {
|
|
let pow_i_betas = pow_i(i, &betas_star);
|
|
let curr = pow_i_betas * f_ev[i];
|
|
Gsum += curr;
|
|
}
|
|
// G_evals[hi] = Gsum / Z_X.evaluate(&h); // WIP
|
|
G_evals[hi] = Gsum;
|
|
}
|
|
let G_X: DensePolynomial<C::ScalarField> =
|
|
Evaluations::<C::ScalarField>::from_vec_and_domain(G_evals.clone(), EH).interpolate();
|
|
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
|
|
// K(X) = (G(X)- F(alpha)*L_0(X)) / Z(X)
|
|
let L0_e = &L_X[0] * F_alpha; // L0(X)*F(a) will be 0 in the native case
|
|
let G_L0e = &G_X - &L0_e;
|
|
// TODO move division by Z_X to the prev loop
|
|
let (K_X, remainder) = G_L0e.divide_by_vanishing_poly(H).unwrap();
|
|
assert!(remainder.is_zero());
|
|
|
|
transcript.add_vec(&K_X.coeffs);
|
|
|
|
let gamma = transcript.get_challenge();
|
|
|
|
let e_star =
|
|
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
|
|
|
|
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
|
|
for i in 0..k {
|
|
phi_star += vec_instances[i].phi.0 * L_X[i + 1].evaluate(&gamma);
|
|
}
|
|
let mut w_star: Vec<C::ScalarField> = vec_scalar_mul(&w.w, &L_X[0].evaluate(&gamma));
|
|
for i in 0..k {
|
|
w_star = vec_add(
|
|
&w_star,
|
|
&vec_scalar_mul(&vec_w[i].w, &L_X[i + 1].evaluate(&gamma)),
|
|
);
|
|
}
|
|
let mut r_w_star: C::ScalarField = w.r_w * L_X[0].evaluate(&gamma);
|
|
for i in 0..k {
|
|
r_w_star += vec_w[i].r_w * L_X[i + 1].evaluate(&gamma);
|
|
}
|
|
|
|
(
|
|
F_X_dense.coeffs,
|
|
K_X.coeffs,
|
|
CommittedInstance {
|
|
betas: betas_star,
|
|
phi: Commitment(phi_star),
|
|
e: e_star,
|
|
},
|
|
Witness {
|
|
w: w_star,
|
|
r_w: w.r_w, // wip, fold also r_w (blinding used for the w commitment)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn verifier(
|
|
transcript: &mut Transcript<C::ScalarField, C>,
|
|
r1cs: &R1CS<C::ScalarField>,
|
|
// running instance
|
|
instance: CommittedInstance<C>,
|
|
// incomming instances
|
|
vec_instances: Vec<CommittedInstance<C>>,
|
|
// polys from P
|
|
F_coeffs: Vec<C::ScalarField>,
|
|
K_coeffs: Vec<C::ScalarField>,
|
|
) -> CommittedInstance<C> {
|
|
let t = instance.betas.len();
|
|
let n = r1cs.A[0].len();
|
|
|
|
let delta = transcript.get_challenge();
|
|
let deltas = powers_of_beta(delta, t);
|
|
|
|
transcript.add_vec(&F_coeffs);
|
|
|
|
let alpha = transcript.get_challenge();
|
|
let alphas = all_powers(alpha, n);
|
|
|
|
// F(alpha) = e + \sum_t F_i * alpha^i
|
|
let mut F_alpha = instance.e;
|
|
for (i, F_i) in F_coeffs.iter().skip(1).enumerate() {
|
|
F_alpha += *F_i * alphas[i + 1];
|
|
}
|
|
|
|
let betas_star: Vec<C::ScalarField> = instance
|
|
.betas
|
|
.iter()
|
|
.zip(
|
|
deltas
|
|
.iter()
|
|
.map(|delta_i| alpha * delta_i)
|
|
.collect::<Vec<C::ScalarField>>(),
|
|
)
|
|
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
|
|
.collect();
|
|
|
|
let k = vec_instances.len();
|
|
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
|
|
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
|
|
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
|
|
let K_X: DensePolynomial<C::ScalarField> =
|
|
DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs);
|
|
|
|
transcript.add_vec(&K_X.coeffs);
|
|
|
|
let gamma = transcript.get_challenge();
|
|
|
|
let e_star =
|
|
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
|
|
|
|
let mut phi_star: C = instance.phi.0 * L_X[0].evaluate(&gamma);
|
|
for i in 0..k {
|
|
phi_star += vec_instances[i].phi.0 * L_X[i + 1].evaluate(&gamma);
|
|
}
|
|
|
|
// return the folded instance
|
|
CommittedInstance {
|
|
betas: betas_star,
|
|
phi: Commitment(phi_star),
|
|
e: e_star,
|
|
}
|
|
}
|
|
}
|
|
|
|
// naive impl of pow_i for betas, assuming that betas=(b, b^2, b^4, ..., b^{2^{t-1}})
|
|
fn pow_i<F: PrimeField>(i: usize, betas: &Vec<F>) -> F {
|
|
// WIP check if makes more sense to do it with ifs instead of arithmetic
|
|
|
|
let n = 2_u64.pow(betas.len() as u32);
|
|
let b = bit_decompose(i as u64, n as usize);
|
|
|
|
let mut r: F = F::one();
|
|
for (j, beta_j) in betas.iter().enumerate() {
|
|
let mut b_j = F::zero();
|
|
if b[j] {
|
|
b_j = F::one();
|
|
}
|
|
r *= (F::one() - b_j) + b_j * beta_j;
|
|
}
|
|
r
|
|
}
|
|
|
|
fn pow_i_over_x<F: PrimeField>(i: usize, betas: &Vec<F>, deltas: &Vec<F>) -> SparsePolynomial<F> {
|
|
assert_eq!(betas.len(), deltas.len());
|
|
|
|
let n = 2_u64.pow(betas.len() as u32);
|
|
let b = bit_decompose(i as u64, n as usize);
|
|
|
|
let mut r: SparsePolynomial<F> =
|
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
|
|
for (j, beta_j) in betas.iter().enumerate() {
|
|
if b[j] {
|
|
let curr: SparsePolynomial<F> =
|
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
|
|
r = r.mul(&curr);
|
|
}
|
|
}
|
|
r
|
|
}
|
|
|
|
// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
|
|
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
|
|
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
|
|
for i in 0..domain_n.size() {
|
|
let evals: Vec<F> = cfg_into_iter!(0..domain_n.size())
|
|
.map(|k| if k == i { F::one() } else { F::zero() })
|
|
.collect();
|
|
lagrange_polynomials.push(Evaluations::from_vec_and_domain(evals, domain_n).interpolate());
|
|
}
|
|
lagrange_polynomials
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct R1CS<F: PrimeField> {
|
|
pub A: Vec<Vec<F>>,
|
|
pub B: Vec<Vec<F>>,
|
|
pub C: Vec<Vec<F>>,
|
|
}
|
|
|
|
// f(w) in R1CS context
|
|
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &[F]) -> Vec<F> {
|
|
let AzBz = hadamard(&mat_vec_mul(&r1cs.A, w), &mat_vec_mul(&r1cs.B, w));
|
|
let Cz = mat_vec_mul(&r1cs.C, w);
|
|
vec_sub(&AzBz, &Cz)
|
|
}
|
|
|
|
fn check_instance<C: CurveGroup>(
|
|
r1cs: &R1CS<C::ScalarField>,
|
|
instance: &CommittedInstance<C>,
|
|
w: &Witness<C>,
|
|
) -> bool {
|
|
let n = 2_u64.pow(instance.betas.len() as u32) as usize;
|
|
|
|
let f_w = eval_f(r1cs, &w.w); // f(w)
|
|
|
|
let mut r = C::ScalarField::zero();
|
|
for i in 0..n {
|
|
r += pow_i(i, &instance.betas) * f_w[i];
|
|
}
|
|
if instance.e == r {
|
|
return true;
|
|
}
|
|
false
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::pedersen::Pedersen;
|
|
use crate::transcript::poseidon_test_config;
|
|
use ark_bls12_381::{Fr, G1Projective};
|
|
use ark_std::UniformRand;
|
|
|
|
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
|
|
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
|
|
for i in 0..M.len() {
|
|
R[i] = vec![F::zero(); M[i].len()];
|
|
for j in 0..M[i].len() {
|
|
R[i][j] = F::from(M[i][j] as u64);
|
|
}
|
|
}
|
|
R
|
|
}
|
|
pub fn to_F_vec<F: PrimeField>(z: Vec<usize>) -> Vec<F> {
|
|
let mut r: Vec<F> = vec![F::zero(); z.len()];
|
|
for i in 0..z.len() {
|
|
r[i] = F::from(z[i] as u64);
|
|
}
|
|
r
|
|
}
|
|
|
|
pub fn get_test_r1cs<F: PrimeField>() -> R1CS<F> {
|
|
// R1CS for: x^3 + x + 5 = y (example from article
|
|
// https://www.vitalik.ca/general/2016/12/10/qap.html )
|
|
let A = to_F_matrix::<F>(vec![
|
|
vec![0, 1, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 1, 0, 0, /**/ 0, 0],
|
|
vec![0, 1, 0, 0, 1, 0, /**/ 0, 0],
|
|
vec![5, 0, 0, 0, 0, 1, /**/ 0, 0],
|
|
//
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
]);
|
|
let B = to_F_matrix::<F>(vec![
|
|
vec![0, 1, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 1, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![1, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![1, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
//
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
]);
|
|
let C = to_F_matrix::<F>(vec![
|
|
vec![0, 0, 0, 1, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 1, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 1, /**/ 0, 0],
|
|
vec![0, 0, 1, 0, 0, 0, /**/ 0, 0],
|
|
//
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
vec![0, 0, 0, 0, 0, 0, /**/ 0, 0],
|
|
]);
|
|
|
|
let r1cs = R1CS::<F> { A, B, C };
|
|
r1cs
|
|
}
|
|
|
|
pub fn get_test_z<F: PrimeField>(input: usize) -> Vec<F> {
|
|
// z = (1, io, w)
|
|
to_F_vec(vec![
|
|
1,
|
|
input,
|
|
input * input * input + input + 5, // x^3 + x + 5
|
|
input * input, // x^2
|
|
input * input * input, // x^2 * x
|
|
input * input * input + input, // x^3 + x
|
|
0, // pad to pow of 2
|
|
0,
|
|
])
|
|
}
|
|
|
|
#[test]
|
|
fn test_pow_i() {
|
|
let mut rng = ark_std::test_rng();
|
|
let t = 4;
|
|
let n = 16;
|
|
let beta = Fr::rand(&mut rng);
|
|
let betas = powers_of_beta(beta, t);
|
|
let not_betas = all_powers(beta, n);
|
|
|
|
for i in 0..n {
|
|
assert_eq!(pow_i(i, &betas), not_betas[i]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_pow_i_over_x() {
|
|
let mut rng = ark_std::test_rng();
|
|
let t = 3;
|
|
let n = 8;
|
|
let beta = Fr::rand(&mut rng);
|
|
let delta = Fr::rand(&mut rng);
|
|
let betas = powers_of_beta(beta, t);
|
|
let deltas = powers_of_beta(delta, t);
|
|
|
|
// compute b + X*d, with X=rand
|
|
let x = Fr::rand(&mut rng);
|
|
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x));
|
|
|
|
// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
|
|
// vector [betas+X*deltas] and then computing pow_i over it
|
|
for i in 0..n {
|
|
let pow_i1 = pow_i_over_x(i, &betas, &deltas);
|
|
let pow_i2 = pow_i(i, &bxd);
|
|
assert_eq!(pow_i1.evaluate(&x), pow_i2);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_eval_f() {
|
|
let r1cs = get_test_r1cs::<Fr>();
|
|
let mut z = get_test_z::<Fr>(3);
|
|
|
|
let f_w = eval_f(&r1cs, &z);
|
|
assert!(is_zero_vec(&f_w));
|
|
|
|
z[1] = Fr::from(111);
|
|
let f_w = eval_f(&r1cs, &z);
|
|
assert!(!is_zero_vec(&f_w));
|
|
}
|
|
|
|
// k represents the number of instances to be fold, appart from the running instance
|
|
fn prepare_inputs(
|
|
k: usize,
|
|
) -> (
|
|
Witness<G1Projective>,
|
|
CommittedInstance<G1Projective>,
|
|
Vec<Witness<G1Projective>>,
|
|
Vec<CommittedInstance<G1Projective>>,
|
|
) {
|
|
let mut rng = ark_std::test_rng();
|
|
let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
|
|
|
|
let z = get_test_z::<Fr>(3);
|
|
let mut zs: Vec<Vec<Fr>> = Vec::new();
|
|
for i in 0..k {
|
|
let z_i = get_test_z::<Fr>(i + 4);
|
|
zs.push(z_i);
|
|
}
|
|
|
|
let n = z.len();
|
|
let t = log2(n) as usize;
|
|
|
|
let beta = Fr::rand(&mut rng);
|
|
let betas = powers_of_beta(beta, t);
|
|
|
|
let witness = Witness::<G1Projective> {
|
|
w: z.clone(), // WIP
|
|
r_w: Fr::rand(&mut rng),
|
|
};
|
|
let phi = Pedersen::<G1Projective>::commit(&pedersen_params, &witness.w, &witness.r_w);
|
|
let instance = CommittedInstance::<G1Projective> {
|
|
phi,
|
|
betas: betas.clone(),
|
|
e: Fr::zero(),
|
|
};
|
|
// same for the other instances
|
|
let mut witnesses: Vec<Witness<G1Projective>> = Vec::new();
|
|
let mut instances: Vec<CommittedInstance<G1Projective>> = Vec::new();
|
|
for i in 0..k {
|
|
let witness_i = Witness::<G1Projective> {
|
|
w: zs[i].clone(), // WIP
|
|
r_w: Fr::rand(&mut rng),
|
|
};
|
|
let phi_i =
|
|
Pedersen::<G1Projective>::commit(&pedersen_params, &witness_i.w, &witness_i.r_w);
|
|
let instance_i = CommittedInstance::<G1Projective> {
|
|
phi: phi_i,
|
|
betas: betas.clone(),
|
|
e: Fr::zero(),
|
|
};
|
|
witnesses.push(witness_i);
|
|
instances.push(instance_i);
|
|
}
|
|
|
|
(witness, instance, witnesses, instances)
|
|
}
|
|
|
|
#[test]
|
|
fn test_fold_native_case() {
|
|
let k = 6;
|
|
let (witness, instance, witnesses, instances) = prepare_inputs(k);
|
|
let r1cs = get_test_r1cs::<Fr>();
|
|
|
|
// init Prover & Verifier's transcript
|
|
let poseidon_config = poseidon_test_config::<Fr>();
|
|
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
|
|
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
|
|
|
|
let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover(
|
|
&mut transcript_p,
|
|
&r1cs,
|
|
instance.clone(),
|
|
witness,
|
|
instances.clone(),
|
|
witnesses,
|
|
);
|
|
|
|
// veriier
|
|
let folded_instance_v = Folding::<G1Projective>::verifier(
|
|
&mut transcript_v,
|
|
&r1cs,
|
|
instance,
|
|
instances,
|
|
F_coeffs,
|
|
K_coeffs,
|
|
);
|
|
|
|
// check that prover & verifier folded instances are the same values
|
|
assert_eq!(folded_instance.phi.0, folded_instance_v.phi.0);
|
|
assert_eq!(folded_instance.betas, folded_instance_v.betas);
|
|
assert_eq!(folded_instance.e, folded_instance_v.e);
|
|
assert!(!folded_instance.e.is_zero());
|
|
|
|
// check that the folded instance satisfies the relation
|
|
assert!(check_instance(&r1cs, &folded_instance, &folded_witness));
|
|
}
|
|
|
|
#[test]
|
|
fn test_fold_various_iterations() {
|
|
let r1cs = get_test_r1cs::<Fr>();
|
|
|
|
// init Prover & Verifier's transcript
|
|
let poseidon_config = poseidon_test_config::<Fr>();
|
|
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
|
|
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
|
|
|
|
let (mut running_witness, mut running_instance, _, _) = prepare_inputs(0);
|
|
|
|
// fold k instances on each of num_iters iterations
|
|
let k = 6;
|
|
let num_iters = 10;
|
|
for _ in 0..num_iters {
|
|
// generate the instances to be fold
|
|
let (_, _, witnesses, instances) = prepare_inputs(k);
|
|
|
|
let (F_coeffs, K_coeffs, folded_instance, folded_witness) =
|
|
Folding::<G1Projective>::prover(
|
|
&mut transcript_p,
|
|
&r1cs,
|
|
running_instance.clone(),
|
|
running_witness.clone(),
|
|
instances.clone(),
|
|
witnesses,
|
|
);
|
|
|
|
// veriier
|
|
let folded_instance_v = Folding::<G1Projective>::verifier(
|
|
&mut transcript_v,
|
|
&r1cs,
|
|
running_instance.clone(),
|
|
instances,
|
|
F_coeffs,
|
|
K_coeffs,
|
|
);
|
|
|
|
// check that prover & verifier folded instances are the same values
|
|
assert_eq!(folded_instance.phi.0, folded_instance_v.phi.0);
|
|
assert_eq!(folded_instance.betas, folded_instance_v.betas);
|
|
assert_eq!(folded_instance.e, folded_instance_v.e);
|
|
assert!(!folded_instance.e.is_zero());
|
|
|
|
// check that the folded instance satisfies the relation
|
|
assert!(check_instance(&r1cs, &folded_instance, &folded_witness));
|
|
|
|
running_witness = folded_witness;
|
|
running_instance = folded_instance;
|
|
}
|
|
}
|
|
}
|