Browse Source

Schnorr proofs in progress

master
Brian Lawrence 6 months ago
parent
commit
539096f8ef
2 changed files with 136 additions and 32 deletions
  1. +13
    -13
      src/schnorr.rs
  2. +123
    -19
      src/schnorr_prover.rs

+ 13
- 13
src/schnorr.rs

@ -9,30 +9,30 @@ use rand::Rng;
const BIG_GROUP_GEN: GoldilocksField = GoldilocksField(14293326489335486720);
#[derive(Copy, Clone, Debug)]
struct SchnorrSigner {
pub struct SchnorrSigner {
PRIME_GROUP_GEN: GoldilocksField,
PRIME_GROUP_ORDER: u64,
}
#[derive(Copy, Clone, Debug)]
struct SchnorrSecretKey {
sk: u64,
pub struct SchnorrSecretKey {
pub sk: u64,
}
#[derive(Copy, Clone, Debug)]
struct SchnorrPublicKey {
pk: GoldilocksField,
pub struct SchnorrPublicKey {
pub pk: GoldilocksField,
}
#[derive(Copy, Clone, Debug)]
struct SchnorrSignature {
s: u64,
e: u64,
pub struct SchnorrSignature {
pub s: u64,
pub e: u64,
}
impl SchnorrSigner{
fn new() -> Self {
pub fn new() -> Self {
let quotient_order: u64 = (1 << 48) - (1 << 32);
let PRIME_GROUP_GEN: GoldilocksField = Self::pow(BIG_GROUP_GEN, quotient_order);
let PRIME_GROUP_ORDER: u64 = (1 << 16) + 1;
@ -53,7 +53,7 @@ impl SchnorrSigner{
res
}
fn keygen(&self, sk: &SchnorrSecretKey) -> SchnorrPublicKey {
pub fn keygen(&self, sk: &SchnorrSecretKey) -> SchnorrPublicKey {
let pk: GoldilocksField = Self::pow(self.PRIME_GROUP_GEN, sk.sk).inverse();
println!("{:?}", self.PRIME_GROUP_GEN);
// self.PRIME_GROUP_GEN is 6612579038192137166
@ -76,13 +76,13 @@ impl SchnorrSigner{
rng.gen_range(0..group_order)
}
fn u64_into_goldilocks_vec(&self, msg: Vec<u64>) -> Vec<GoldilocksField> {
pub fn u64_into_goldilocks_vec(&self, msg: Vec<u64>) -> Vec<GoldilocksField> {
msg.into_iter()
.map(|x| GoldilocksField::from_noncanonical_u64(x))
.collect()
}
fn sign(&self, msg: &Vec<GoldilocksField>, sk: &SchnorrSecretKey, rng: &mut rand::rngs::ThreadRng) -> SchnorrSignature {
pub fn sign(&self, msg: &Vec<GoldilocksField>, sk: &SchnorrSecretKey, rng: &mut rand::rngs::ThreadRng) -> SchnorrSignature {
let k: u64 = self.rand_group_multiplier(rng);
let r: GoldilocksField = Self::pow(self.PRIME_GROUP_GEN, k);
let e: u64 = self.hash_insecure(&r, msg);
@ -98,7 +98,7 @@ impl SchnorrSigner{
SchnorrSignature{e, s}
}
fn verify(&self, sig: &SchnorrSignature, msg: &Vec<GoldilocksField>, pk: &SchnorrPublicKey) -> bool {
pub fn verify(&self, sig: &SchnorrSignature, msg: &Vec<GoldilocksField>, pk: &SchnorrPublicKey) -> bool {
let r: GoldilocksField = Self::pow(self.PRIME_GROUP_GEN, sig.s)
* Self::pow(pk.pk, sig.e);
let e_v: u64 = self.hash_insecure(&r, msg);

+ 123
- 19
src/schnorr_prover.rs

@ -11,47 +11,105 @@ use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::plonk::proof::ProofWithPublicInputs;
pub struct MessageTarget {
msg: Vec<Target>,
}
impl MessageTarget {
fn new_with_size(builder: &mut CircuitBuilder<GoldilocksField, 2>, n: usize) -> Self {
Self {
msg: builder.add_virtual_targets(n),
}
}
}
pub struct SchnorrSignatureTarget {
s: Target,
e: Target,
}
impl SchnorrSignatureTarget {
fn new_virtual(builder: &mut CircuitBuilder<GoldilocksField, 2>) -> Self {
let s = builder.add_virtual_target();
let e = builder.add_virtual_target();
Self{ s, e }
}
}
pub struct SchnorrPublicKeyTarget {
pk: Target,
}
#[derive(Debug, Default)]
pub struct Mod65537Generator {
a: Target,
q: Target,
r: Target,
}
pub struct SchnorrBuilder {
}
impl SchnorrBuilder {
// the output Target is constrained to equal x^a
// here we assume that
// waaait, maybe I can use their built in thing
fn prove_power<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize
> (builder: &mut CircuitBuilder::<F, D>, x: Target, a: Target, num_bits: usize) -> Target {
let bits: Vec<BoolTarget> = builder.split_le(a, num_bits);
// make a sequence of targets x_i
// where x_0 = 1
// x_{num_bits} = x^a
// and in between:
// x_i = x_{i-1}**2 * (bits[num_bits+1-i] ? 1 : x)
// Reduce a modulo the constant 65537
// where a is the canonical representative for an element of the field
// (meaning: 0 \leq a < p)
// To verify this, write
// a = 65537 * q + r, and do range checks to check that:
// 0 <= q <= floor(p / 65537)
// 0 <= r < 65537
// (these first two checks guarantee that a lies in the range [0, p + 65536])
// if q = floor(p / 65537) then r = 0
// (note that p % 65537 == 1 so this is the only possibility)
fn mod_65537 <
C: GenericConfig<2, F = GoldilocksField>,
> (
builder: &mut CircuitBuilder::<GoldilocksField, 2>,
a: &Target,
) -> Target {
let q = builder.add_virtual_target();
let r = builder.add_virtual_target();
// the Mod65537Generator will assign values to q and r later
builder.add_simple_generator( Mod65537Generator { a, q, r } );
// impose four constraints
// 1. a = 65537 * q + r
let t65537 = builder.constant(GoldilocksField::from_canonical_u64(65537));
let a_copy = builder.mul_add(t65537, q, r);
builder.connect(*a, a_copy);
// 2. 0 <= q <= floor(p / 65537)
// max_q is 281470681743360 = floor(p / 65537) = (p-1) / 65537 = 2^48 - 2^32
let max_q = builder.constant(GoldilocksField::from_canonical_u64(281470681743360));
builder.range_check(q, 48);
builder.range_check(builder.sub(max_q, q), 48);
// 3. 0 <= r < 65537
let max_r = builder.constant(GoldilocksField::from_canonical_u64(65537));
builder.range_check(r, 17);
builder.range_check(builder.sub(max_r, r), 17);
// 4. if q = floor(p / 65537) then r = 0
let q_equals_max = builder.is_equal(q, max_q);
builder.connect(builder.mul(q_equals_max.target, r), builder.zero());
r
}
fn constrain_sig <
C: GenericConfig<2, F = GoldilocksField>,
> (
&self,
builder: &mut CircuitBuilder::<GoldilocksField, 2>,
sig: &SchnorrSignatureTarget,
msg: &Vec<Target>,
msg: &MessageTarget,
pk: &SchnorrPublicKeyTarget,
) -> () {
let PRIME_GROUP_GEN: Target = builder.constant(GoldilocksField::from_canonical_u64(6612579038192137166));
let PRIME_GROUP_ORDER: Target = builder.constant(GoldilocksField::from_canonical_u64(65537));
const num_bits_exp: usize = 32;
/*
@ -65,15 +123,61 @@ impl SchnorrBuilder {
let r: Target = builder.mul(gs, pe);
// compute hash
// note that it's safe to clone Targets since they just contain indices
let hash_input: Vec<Target> = std::iter::once(r)
.chain(msg.iter().cloned())
.chain(msg.iter().cloned())
.collect();
let e: Target = builder.hash_n_to_hash_no_pad::<PoseidonHash>(
hash_input,
).elements[0];
).elements[0] // whoops have to take mod group order;
// verify equality
// enforce equality
builder.connect(e, sig.e);
}
}
#[cfg(test)]
mod tests{
use crate::schnorr::{SchnorrPublicKey, SchnorrSecretKey, SchnorrSigner, SchnorrSignature};
use crate::schnorr_prover::SchnorrBuilder;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitData, VerifierOnlyCircuitData};
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::field::goldilocks_field::GoldilocksField;
use rand;
#[test]
fn test_schnorr() -> () {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let mut rng: rand::rngs::ThreadRng = rand::thread_rng();
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
builder.add_virtual_fri_proof(num_leaves_per_oracle, params)
let sb: SchnorrBuilder = SchnorrBuilder{};
// create keypair, message, signature
let sk: SchnorrSecretKey = SchnorrSecretKey{ sk: 133 };
let ss = SchnorrSigner::new();
let pk: SchnorrPublicKey = ss.keygen(&sk);
let msg: Vec<GoldilocksField> = ss.u64_into_goldilocks_vec(
vec![1500, 1600, 0, 0, 0]
);
let msg_size: usize = msg.len();
let sig: SchnorrSignature = ss.sign(&msg, &sk, &mut rng);
let sig_target = builder.constant(sig);
// instead of verifying we're going to prove the verification
sb.constrain_sig(
&mut builder,
&sig,
&msg,
&pk
);
}
}

Loading…
Cancel
Save