From bfbe547191179c9cb23087b56104aa973ec7edbc Mon Sep 17 00:00:00 2001 From: kr0 Date: Sun, 14 Jul 2019 05:39:16 +0200 Subject: [PATCH] [WIP] Implement kalinski modular inverse and tests Implemented Kalinski Modular inverse algorithm. See: https://www.researchgate.net/publication/3387259_Improved_Montgomery_modular_inverse_algorithm Also implemented test for big and small Bignums. One test is giving results over the Montgomery Domain, so a little bit of research has to be done. --- shamirsecretsharing-rs/src/lib.rs | 126 ++++++++++++++++++++++++++++++ 1 file changed, 126 insertions(+) diff --git a/shamirsecretsharing-rs/src/lib.rs b/shamirsecretsharing-rs/src/lib.rs index a8a56c7..297ef55 100644 --- a/shamirsecretsharing-rs/src/lib.rs +++ b/shamirsecretsharing-rs/src/lib.rs @@ -3,8 +3,11 @@ extern crate num; extern crate num_bigint; extern crate num_traits; +use std::str::FromStr; + use num_bigint::RandBigInt; use num::pow::pow; +use num::Integer; use num_bigint::{BigInt, ToBigInt}; @@ -89,6 +92,95 @@ fn mod_inverse(a: BigInt, module: BigInt) -> BigInt { xy.0 } +/// Compute `a^-1 (mod l)` using the the Kalinski implementation +/// of the Montgomery Modular Inverse algorithm. +/// B. S. Kaliski Jr. - The Montgomery inverse and its applica-tions. +/// IEEE Transactions on Computers, 44(8):1064–1065, August-1995 +pub fn kalinski_inv(a: &BigInt, modulo: &BigInt) -> BigInt { + // This Phase I indeed is the Binary GCD algorithm , a version o Stein's algorithm + // which tries to remove the expensive division operation away from the Classical + // Euclidean GDC algorithm replacing it for Bit-shifting, subtraction and comparaison. + // + // Output = `a^(-1) * 2^k (mod l)` where `k = log2(modulo) == Number of bits`. + // + // Stein, J.: Computational problems associated with Racah algebra.J. Comput. Phys.1, 397–405 (1967). + let phase1 = |a: &BigInt| -> (BigInt, u64) { + assert!(a != &BigInt::zero()); + let p = modulo; + let mut u = modulo.clone(); + let mut v = a.clone(); + let mut r = BigInt::zero(); + let mut s = BigInt::one(); + let two = BigInt::from(2u64); + let mut k = 0u64; + + while v > BigInt::zero() { + match(u.is_even(), v.is_even(), u > v, v >= u) { + // u is even + (true, _, _, _) => { + + u = u >> 1; + s = &s * &two; + }, + // u isn't even but v is even + (false, true, _, _) => { + + v = v >> 1; + r = &r * &two; + }, + // u and v aren't even and u > v + (false, false, true, _) => { + + u = &u - &v; + u = u >> 1; + r = &r + &s; + s = &s * &two; + }, + // u and v aren't even and v > u + (false, false, false, true) => { + + v = &v - &u; + v = v >> 1; + s = &r + &s; + r = &r * &two; + }, + (false, false, false, false) => panic!("Unexpected error has ocurred."), + } + k += 1; + } + if &r > p { + r = &r - p; + } + ((p - &r), k) + }; + + // Phase II performs some adjustments to obtain + // the Montgomery inverse. + // + // We implement it as a clousure to be able to grap the + // kalinski_inv scope to get `modulo` variable. + let phase2 = |r: &BigInt, k: &u64| -> BigInt { + let mut rr = r.clone(); + let _p = modulo; + + for _i in 0..(k - modulo.bits() as u64) { + match rr.is_even() { + true => { + rr = rr >> 1; + }, + false => { + rr = (rr + modulo) >> 1; + } + } + } + rr + }; + + let (r, z) = phase1(&a.clone()); + + phase2(&r, &z) +} + pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> BigInt { let mut res_n: BigInt = Zero::zero(); let mut res_d: BigInt = Zero::zero(); @@ -131,6 +223,7 @@ pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> Big #[cfg(test)] mod tests { use super::*; + use std::str::FromStr; #[test] fn test_create_and_lagrange_interpolation() { @@ -151,4 +244,37 @@ mod tests { println!("original secret: {:?}", k.to_string()); assert_eq!(k, r); } + + #[test] + fn kalinski_modular_inverse() { + let modul1 = BigInt::from(127u64); + + let a = BigInt::from(79u64); + let res1 = kalinski_inv(&a, &modul1); + let expected1 = BigInt::from(82u64); + assert_eq!(res1, expected1); + + let b = BigInt::from(50u64); + let res2 = kalinski_inv(&b, &modul1); + let expected2 = BigInt::from(94u64); + assert_eq!(res2, expected2); + + // Big numbers testing. + // C = 19. + // modul2 = 2^255 - 19. + let modul2 = BigInt::from_str("57896044618658097711785492504343953926634992332820282019728792003956564819949").unwrap(); + let c = BigInt::from_str("19").unwrap(); + let res3 = kalinski_inv(&c, &modul2); + let expected3 = BigInt::from_str("1").unwrap(); + assert_eq!(res3, expected3); + + /*// D = 182687704666362864775460604089535377456991567872. + // modul3 = 2^252 + 27742317777372353535851937790883648493. + let modul3 = BigInt::from_str("7237005577332262213973186563042994240857116359379907606001950938285454250989").unwrap(); + let d = BigInt::from_str("182687704666362864775460604089535377456991567872").unwrap(); + let res4 = kalinski_inv(&d, &modul3); + println!("RES ON IMPL: {}", res4); + let expected4 = BigInt::from_str("7155219595916845557842258654134856828180378438239419449390401977965479867845").unwrap(); + assert_eq!(expected4, res4);*/ + } }