diff --git a/shamirsecretsharing-rs/Cargo.toml b/shamirsecretsharing-rs/Cargo.toml index 410275d..248218c 100644 --- a/shamirsecretsharing-rs/Cargo.toml +++ b/shamirsecretsharing-rs/Cargo.toml @@ -9,3 +9,12 @@ rand = "0.6.5" num = "0.2.0" num-bigint = {version = "0.2.2", features = ["rand"]} num-traits = "0.2.8" + +[dev-dependencies] +criterion = "0.2" + +# Criterion benchmarks +[[bench]] +path = "./benchmarks/benches.rs" +name = "benches" +harness = false \ No newline at end of file diff --git a/shamirsecretsharing-rs/benchmarks/benches.rs b/shamirsecretsharing-rs/benchmarks/benches.rs new file mode 100644 index 0000000..dd68381 --- /dev/null +++ b/shamirsecretsharing-rs/benchmarks/benches.rs @@ -0,0 +1,38 @@ +#[macro_use] +extern crate criterion; +extern crate shamirsecretsharing_rs; +extern crate num_bigint; + +use criterion::{Criterion, Benchmark}; +use shamirsecretsharing_rs::*; +use num_bigint::BigInt; + +use std::str::FromStr; + + +mod mod_inv_benches { + use super::*; + + pub fn bench_modular_inv(c: &mut Criterion) { + + let modul1 = BigInt::from_str("7237005577332262213973186563042994240857116359379907606001950938285454250989").unwrap(); + let d1 = BigInt::from_str("182687704666362864775460604089535377456991567872").unwrap(); + + let modul2 = BigInt::from_str("7237005577332262213973186563042994240857116359379907606001950938285454250989").unwrap(); + let d2 = BigInt::from_str("182687704666362864775460604089535377456991567872").unwrap(); + + c.bench( + "Modular Inverse", + Benchmark::new("Kalinski Modular inverse", move |b| b.iter(|| kalinski_inv(&d1, &modul1))) + ); + + c.bench( + "Modular Inverse", + Benchmark::new("Standard Mod Inv", move |b| b.iter(|| mod_inverse(d2.clone(), modul2.clone()))) + ); + } +} + +criterion_group!(benches, + mod_inv_benches::bench_modular_inv); +criterion_main!(benches); \ No newline at end of file diff --git a/shamirsecretsharing-rs/src/lib.rs b/shamirsecretsharing-rs/src/lib.rs index a8a56c7..f361ac4 100644 --- a/shamirsecretsharing-rs/src/lib.rs +++ b/shamirsecretsharing-rs/src/lib.rs @@ -3,8 +3,11 @@ extern crate num; extern crate num_bigint; extern crate num_traits; +use std::str::FromStr; + use num_bigint::RandBigInt; use num::pow::pow; +use num::Integer; use num_bigint::{BigInt, ToBigInt}; @@ -72,7 +75,7 @@ fn unpack_shares(s: Vec<[BigInt;2]>) -> (Vec, Vec) { (shares, is) } -fn mod_inverse(a: BigInt, module: BigInt) -> BigInt { +pub fn mod_inverse(a: BigInt, module: BigInt) -> BigInt { // TODO search biguint impl of mod_inv let mut mn = (module.clone(), a); let mut xy: (BigInt, BigInt) = (Zero::zero(), One::one()); @@ -89,6 +92,94 @@ fn mod_inverse(a: BigInt, module: BigInt) -> BigInt { xy.0 } +/// Compute `a^-1 (mod l)` using the the Kalinski implementation +/// of the Montgomery Modular Inverse algorithm. +/// B. S. Kaliski Jr. - The Montgomery inverse and its applica-tions. +/// IEEE Transactions on Computers, 44(8):1064–1065, August-1995 +pub fn kalinski_inv(a: &BigInt, modulo: &BigInt) -> BigInt { + // This Phase I indeed is the Binary GCD algorithm , a version o Stein's algorithm + // which tries to remove the expensive division operation away from the Classical + // Euclidean GDC algorithm replacing it for Bit-shifting, subtraction and comparaison. + // + // Output = `a^(-1) * 2^k (mod l)` where `k = log2(modulo) == Number of bits`. + // + // Stein, J.: Computational problems associated with Racah algebra.J. Comput. Phys.1, 397–405 (1967). + let phase1 = |a: &BigInt| -> (BigInt, u64) { + assert!(a != &BigInt::zero()); + let p = modulo; + let mut u = modulo.clone(); + let mut v = a.clone(); + let mut r = BigInt::zero(); + let mut s = BigInt::one(); + let mut k = 0u64; + + while v > BigInt::zero() { + match(u.is_even(), v.is_even(), u > v, v >= u) { + // u is even + (true, _, _, _) => { + + u = u >> 1; + s = s << 1; + }, + // u isn't even but v is even + (false, true, _, _) => { + + v = v >> 1; + r = &r << 1; + }, + // u and v aren't even and u > v + (false, false, true, _) => { + + u = &u - &v; + u = u >> 1; + r = &r + &s; + s = &s << 1; + }, + // u and v aren't even and v > u + (false, false, false, true) => { + + v = &v - &u; + v = v >> 1; + s = &r + &s; + r = &r << 1; + }, + (false, false, false, false) => panic!("Unexpected error has ocurred."), + } + k += 1; + } + if &r > p { + r = &r - p; + } + ((p - &r), k) + }; + + // Phase II performs some adjustments to obtain + // the Montgomery inverse. + // + // We implement it as a clousure to be able to grap the + // kalinski_inv scope to get `modulo` variable. + let phase2 = |r: &BigInt, k: &u64| -> BigInt { + let mut rr = r.clone(); + let _p = modulo; + + for _i in 0..*k { + match rr.is_even() { + true => { + rr = rr >> 1; + }, + false => { + rr = (rr + modulo) >> 1; + } + } + } + rr + }; + + let (r, z) = phase1(&a.clone()); + + phase2(&r, &z) +} + pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> BigInt { let mut res_n: BigInt = Zero::zero(); let mut res_d: BigInt = Zero::zero(); @@ -118,7 +209,7 @@ pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> Big } let modinv_mul: BigInt; if res_d != Zero::zero() { - let modinv = mod_inverse(res_d, p.clone()); + let modinv = kalinski_inv(&res_d, &p); modinv_mul = res_n * modinv; } else { modinv_mul = res_n; @@ -130,7 +221,9 @@ pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> Big #[cfg(test)] mod tests { + use super::*; + use std::str::FromStr; #[test] fn test_create_and_lagrange_interpolation() { @@ -151,4 +244,29 @@ mod tests { println!("original secret: {:?}", k.to_string()); assert_eq!(k, r); } + + #[test] + fn kalinski_modular_inverse() { + let modul1 = BigInt::from(127u64); + + let a = BigInt::from(79u64); + let res1 = kalinski_inv(&a, &modul1); + let expected1 = BigInt::from(82u64); + assert_eq!(res1, expected1); + + let b = BigInt::from(50u64); + let res2 = kalinski_inv(&b, &modul1); + let expected2 = BigInt::from(94u64); + assert_eq!(res2, expected2); + + // Modulo: 2^252 + 27742317777372353535851937790883648493 + // Tested: 182687704666362864775460604089535377456991567872 + // Expected for: inverse_mod(a, l) computed on SageMath: + // `7155219595916845557842258654134856828180378438239419449390401977965479867845`. + let modul3 = BigInt::from_str("7237005577332262213973186563042994240857116359379907606001950938285454250989").unwrap(); + let d = BigInt::from_str("182687704666362864775460604089535377456991567872").unwrap(); + let res4 = kalinski_inv(&d, &modul3); + let expected4 = BigInt::from_str("7155219595916845557842258654134856828180378438239419449390401977965479867845").unwrap(); + assert_eq!(expected4, res4); + } }