Browse Source

fix: organize padding

main
Daniel Tehrani 2 years ago
parent
commit
abd355d870
13 changed files with 185 additions and 130 deletions
  1. +3
    -2
      shockwave_plus/benches/prove.rs
  2. +27
    -14
      shockwave_plus/src/lib.rs
  3. +1
    -1
      shockwave_plus/src/polynomial/mod.rs
  4. +1
    -0
      shockwave_plus/src/polynomial/sparse_ml_poly.rs
  5. +54
    -12
      shockwave_plus/src/r1cs/r1cs.rs
  6. +8
    -11
      shockwave_plus/src/sumcheck/sc_phase_1.rs
  7. +13
    -11
      shockwave_plus/src/sumcheck/sc_phase_2.rs
  8. +16
    -11
      tensor_pcs/benches/prove.rs
  9. +2
    -2
      tensor_pcs/src/lib.rs
  10. +1
    -1
      tensor_pcs/src/polynomial/ml_poly.rs
  11. +1
    -1
      tensor_pcs/src/polynomial/mod.rs
  12. +56
    -64
      tensor_pcs/src/tensor_rs_pcs.rs
  13. +2
    -0
      tensor_pcs/src/utils.rs

+ 3
- 2
shockwave_plus/benches/prove.rs

@ -9,12 +9,13 @@ fn shockwave_plus_bench(c: &mut Criterion) {
type F = halo2curves::secp256k1::Fp;
for exp in [12, 15, 18] {
let num_vars = 2usize.pow(exp);
let num_cons = 2usize.pow(exp as u32);
let num_input = 3;
let num_vars = num_cons - num_input;
let (r1cs, witness) = R1CS::<F>::produce_synthetic_r1cs(num_vars, num_input);
let mut group = c.benchmark_group(format!("ShockwavePlus num_cons: {}", r1cs.num_cons));
let mut group = c.benchmark_group(format!("ShockwavePlus num_cons: {}", r1cs.num_cons()));
let l = 319;
let num_cols = det_num_cols(r1cs.z_len(), l);

+ 27
- 14
shockwave_plus/src/lib.rs

@ -6,11 +6,13 @@ mod sumcheck;
use ark_std::{end_timer, start_timer};
use serde::{Deserialize, Serialize};
use sumcheck::{SCPhase1Proof, SCPhase2Proof, SumCheckPhase1, SumCheckPhase2};
use tensor_pcs::{ecfft::GoodCurve, *};
use tensor_pcs::{ecfft::GoodCurve, MlPoly, *};
// Exports
pub use r1cs::R1CS;
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
#[derive(Serialize, Deserialize)]
pub struct PartialSpartanProof<F: FieldExt> {
pub z_comm: [u8; 32],
@ -69,13 +71,17 @@ impl ShockwavePlus {
r1cs_input: &[F],
transcript: &mut Transcript<F>,
) -> (PartialSpartanProof<F>, Vec<F>) {
// Compute the multilinear extension of the witness
let witness_poly = SparseMLPoly::from_dense(r1cs_witness.to_vec());
// Multilinear extension requires the number of evaluations
// to be a power of two to uniquely determine the polynomial
let mut padded_r1cs_witness = r1cs_witness.to_vec();
padded_r1cs_witness.resize(padded_r1cs_witness.len().next_power_of_two(), F::ZERO);
let witness_poly = MlPoly::new(padded_r1cs_witness.clone());
let Z = R1CS::construct_z(r1cs_witness, r1cs_input);
// Commit the witness polynomial
let comm_witness_timer = start_timer!(|| "Commit witness");
let committed_witness = self.pcs.commit(&witness_poly);
let committed_witness = self.pcs.commit(&padded_r1cs_witness);
let witness_comm = committed_witness.committed_tree.root;
end_timer!(comm_witness_timer);
@ -89,9 +95,13 @@ impl ShockwavePlus {
let m = (self.r1cs.z_len() as f64).log2() as usize;
let tau = transcript.challenge_vec(m);
let Az_poly = self.r1cs.A.mul_vector(&Z);
let Bz_poly = self.r1cs.B.mul_vector(&Z);
let Cz_poly = self.r1cs.C.mul_vector(&Z);
let mut Az_poly = self.r1cs.A.mul_vector(&Z);
let mut Bz_poly = self.r1cs.B.mul_vector(&Z);
let mut Cz_poly = self.r1cs.C.mul_vector(&Z);
Az_poly.resize(Z.len(), F::ZERO);
Bz_poly.resize(Z.len(), F::ZERO);
Cz_poly.resize(Z.len(), F::ZERO);
// Prove that the
// Q(t) = \sum_{x \in {0, 1}^m} (Az_poly(x) * Bz_poly(x) - Cz_poly(x)) eq(t, x)
@ -109,7 +119,6 @@ impl ShockwavePlus {
tau.clone(),
rx.clone(),
);
let (sc_proof_1, (v_A, v_B, v_C)) = sc_phase_1.prove(&self.pcs, transcript);
end_timer!(sc_phase_1_timer);
@ -139,9 +148,13 @@ impl ShockwavePlus {
let z_open_timer = start_timer!(|| "Open witness poly");
// Prove the evaluation of the polynomial Z(y) at ry
let z_eval_proof = self
.pcs
.open(&committed_witness, &witness_poly, &ry[1..], transcript);
let z_eval_proof = self.pcs.open(
&committed_witness,
&padded_r1cs_witness,
&ry[1..],
witness_poly.eval(&ry[1..]),
transcript,
);
end_timer!(z_open_timer);
// Prove the evaluation of the polynomials A(y), B(y), C(y) at ry
@ -262,7 +275,7 @@ mod tests {
fn test_shockwave_plus() {
type F = halo2curves::secp256k1::Fp;
let num_vars = 2usize.pow(6);
let num_vars = 10;
let num_input = 3;
let l = 2;
@ -277,7 +290,7 @@ mod tests {
let (partial_proof, _) =
ShockwavePlus.prove(&witness, &r1cs.public_input, &mut prover_transcript);
let mut verifier_transcript = Transcript::new(b"bench");
ShockwavePlus.verify_partial(&partial_proof, &mut verifier_transcript);
// let mut verifier_transcript = Transcript::new(b"bench");
// ShockwavePlus.verify_partial(&partial_proof, &mut verifier_transcript);
}
}

+ 1
- 1
shockwave_plus/src/polynomial/mod.rs

@ -1 +1 @@
pub mod ml_poly;
pub mod sparse_ml_poly;

tensor_pcs/src/polynomial/sparse_ml_poly.rs → shockwave_plus/src/polynomial/sparse_ml_poly.rs

@ -16,6 +16,7 @@ impl SparseMLPoly {
}
pub fn from_dense(dense_evals: Vec<F>) -> Self {
assert!(dense_evals.len().is_power_of_two());
let sparse_evals = dense_evals
.iter()
.enumerate()

+ 54
- 12
shockwave_plus/src/r1cs/r1cs.rs

@ -1,7 +1,7 @@
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
use crate::FieldExt;
use tensor_pcs::SparseMLPoly;
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct SparseMatrixEntry<F: FieldExt> {
pub row: usize,
pub col: usize,
@ -52,7 +52,10 @@ where
let val = entries[i].val;
evals.push(((row * num_cols) + col, val));
}
let ml_poly_num_vars = ((self.num_cols * self.num_rows) as f64).log2() as usize;
let ml_poly_num_vars = ((self.num_cols.next_power_of_two()
* self.num_rows.next_power_of_two()) as f64)
.log2() as usize;
let ml_poly = SparseMLPoly::new(evals, ml_poly_num_vars);
ml_poly
}
@ -131,7 +134,6 @@ where
pub B: Matrix<F>,
pub C: Matrix<F>,
pub public_input: Vec<F>,
pub num_cons: usize,
pub num_vars: usize,
pub num_input: usize,
}
@ -149,6 +151,10 @@ where
result
}
pub fn num_cons(&self) -> usize {
self.A.entries.len()
}
pub fn z_len(&self) -> usize {
((self.num_vars.next_power_of_two() + 1) + self.num_input).next_power_of_two()
}
@ -185,11 +191,47 @@ where
let mut B_entries: Vec<SparseMatrixEntry<F>> = vec![];
let mut C_entries: Vec<SparseMatrixEntry<F>> = vec![];
let num_cons = z.len();
for i in 0..num_cons {
let A_col = i % num_cons;
let B_col = (i + 1) % num_cons;
let C_col = (i + 2) % num_cons;
// Constrain the variables
for i in 0..num_vars {
let A_col = i % num_vars;
let B_col = (i + 1) % num_vars;
let C_col = (i + 2) % num_vars;
// For the i'th constraint,
// add the value 1 at the (i % num_vars)th column of A, B.
// Compute the corresponding C_column value so that A_i * B_i = C_i
// we apply multiplication since the Hadamard product is computed for Az ・ Bz,
// We only _enable_ a single variable in each constraint.
let AB = if z[C_col] == F::ZERO { F::ZERO } else { F::ONE };
A_entries.push(SparseMatrixEntry {
row: i,
col: A_col,
val: AB,
});
B_entries.push(SparseMatrixEntry {
row: i,
col: B_col,
val: AB,
});
C_entries.push(SparseMatrixEntry {
row: i,
col: C_col,
val: if z[C_col] == F::ZERO {
F::ZERO
} else {
(z[A_col] * z[B_col]) * z[C_col].invert().unwrap()
},
});
}
// Constrain the public inputs
let input_index_start = num_vars.next_power_of_two() + 1;
for i in input_index_start..(input_index_start + num_input) {
let A_col = i;
let B_col = (i + 1) % input_index_start + num_input;
let C_col = (i + 2) % input_index_start + num_input;
// For the i'th constraint,
// add the value 1 at the (i % num_vars)th column of A, B.
@ -221,7 +263,7 @@ where
}
let num_cols = z.len();
let num_rows = num_cols;
let num_rows = z.len();
let A = Matrix::new(A_entries, num_cols, num_rows);
let B = Matrix::new(B_entries, num_cols, num_rows);
@ -233,7 +275,6 @@ where
B,
C,
public_input,
num_cons,
num_vars,
num_input,
},
@ -258,7 +299,7 @@ mod tests {
use super::*;
type F = halo2curves::secp256k1::Fp;
use crate::polynomial::ml_poly::MlPoly;
use tensor_pcs::MlPoly;
// Returns a vector of vectors of length m, where each vector is a boolean vector (big endian)
fn boolean_hypercube<F: FieldExt>(m: usize) -> Vec<Vec<F>> {
@ -286,6 +327,7 @@ mod tests {
let num_vars = num_cons - num_input;
let (r1cs, mut witness) = R1CS::<F>::produce_synthetic_r1cs(num_vars, num_input);
assert_eq!(r1cs.num_cons(), num_cons);
assert_eq!(witness.len(), num_vars);
assert_eq!(r1cs.public_input.len(), num_input);

+ 8
- 11
shockwave_plus/src/sumcheck/sc_phase_1.rs

@ -1,6 +1,6 @@
use crate::sumcheck::unipoly::UniPoly;
use serde::{Deserialize, Serialize};
use tensor_pcs::{EqPoly, SparseMLPoly, TensorMLOpening, TensorMultilinearPCS, Transcript};
use tensor_pcs::{EqPoly, MlPoly, TensorMLOpening, TensorMultilinearPCS, Transcript};
use crate::FieldExt;
@ -50,13 +50,13 @@ impl SumCheckPhase1 {
let mut rng = rand::thread_rng();
// Sample a blinding polynomial g(x_1, ..., x_m)
let random_evals = (0..2usize.pow(num_vars as u32))
let blinder_poly_evals = (0..2usize.pow(num_vars as u32))
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let blinder_poly_sum = random_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly = SparseMLPoly::from_dense(random_evals);
let blinder_poly = MlPoly::new(blinder_poly_evals.clone());
let blinder_poly_sum = blinder_poly_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly_comm = pcs.commit(&blinder_poly);
let blinder_poly_comm = pcs.commit(&blinder_poly_evals);
transcript.append_fe(&blinder_poly_sum);
transcript.append_bytes(&blinder_poly_comm.committed_tree.root);
@ -70,11 +70,7 @@ impl SumCheckPhase1 {
let mut A_table = self.Az_evals.clone();
let mut B_table = self.Bz_evals.clone();
let mut C_table = self.Cz_evals.clone();
let mut blinder_table = blinder_poly
.evals
.iter()
.map(|(_, x)| *x)
.collect::<Vec<F>>();
let mut blinder_table = blinder_poly_evals.clone();
let mut eq_table = self.bound_eq_poly.evals();
let zero = F::ZERO;
@ -122,8 +118,9 @@ impl SumCheckPhase1 {
// Prove the evaluation of the blinder polynomial at rx.
let blinder_poly_eval_proof = pcs.open(
&blinder_poly_comm,
&blinder_poly,
&blinder_poly_evals,
&self.challenge,
blinder_poly.eval(&self.challenge),
transcript,
);

+ 13
- 11
shockwave_plus/src/sumcheck/sc_phase_2.rs

@ -2,7 +2,7 @@ use crate::r1cs::r1cs::Matrix;
use crate::sumcheck::unipoly::UniPoly;
use crate::FieldExt;
use serde::{Deserialize, Serialize};
use tensor_pcs::{EqPoly, SparseMLPoly, TensorMLOpening, TensorMultilinearPCS, Transcript};
use tensor_pcs::{EqPoly, MlPoly, TensorMLOpening, TensorMultilinearPCS, Transcript};
#[derive(Serialize, Deserialize)]
pub struct SCPhase2Proof<F: FieldExt> {
@ -71,12 +71,12 @@ impl SumCheckPhase2 {
let mut rng = rand::thread_rng();
// Sample a blinding polynomial g(x_1, ..., x_m) of degree 3
let random_evals = (0..2usize.pow(num_vars as u32))
let blinder_poly_evals = (0..2usize.pow(num_vars as u32))
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let blinder_poly_sum = random_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly = SparseMLPoly::from_dense(random_evals);
let blinder_poly_comm = pcs.commit(&blinder_poly);
let blinder_poly_sum = blinder_poly_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly = MlPoly::new(blinder_poly_evals.clone());
let blinder_poly_comm = pcs.commit(&blinder_poly_evals);
transcript.append_fe(&blinder_poly_sum);
transcript.append_bytes(&blinder_poly_comm.committed_tree.root);
@ -89,11 +89,7 @@ impl SumCheckPhase2 {
let mut B_table = B_evals.clone();
let mut C_table = C_evals.clone();
let mut Z_table = self.Z_evals.clone();
let mut blinder_table = blinder_poly
.evals
.iter()
.map(|(_, x)| *x)
.collect::<Vec<F>>();
let mut blinder_table = blinder_poly_evals.clone();
let zero = F::ZERO;
let one = F::ONE;
@ -130,7 +126,13 @@ impl SumCheckPhase2 {
let ry = self.challenge.clone();
let blinder_poly_eval_proof = pcs.open(&blinder_poly_comm, &blinder_poly, &ry, transcript);
let blinder_poly_eval_proof = pcs.open(
&blinder_poly_comm,
&blinder_poly_evals,
&ry,
blinder_poly.eval(&ry),
transcript,
);
SCPhase2Proof {
round_polys,

+ 16
- 11
tensor_pcs/benches/prove.rs

@ -1,17 +1,16 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use tensor_pcs::{
rs_config, FieldExt, SparseMLPoly, TensorMultilinearPCS, TensorRSMultilinearPCSConfig,
Transcript,
rs_config, FieldExt, MlPoly, TensorMultilinearPCS, TensorRSMultilinearPCSConfig, Transcript,
};
fn poly<F: FieldExt>(num_vars: usize) -> SparseMLPoly<F> {
fn poly<F: FieldExt>(num_vars: usize) -> MlPoly<F> {
let num_entries: usize = 2usize.pow(num_vars as u32);
let evals = (0..num_entries)
.map(|i| (i, F::from(i as u64)))
.collect::<Vec<(usize, F)>>();
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let ml_poly = SparseMLPoly::new(evals, num_vars);
let ml_poly = MlPoly::new(evals);
ml_poly
}
@ -32,10 +31,13 @@ fn pcs_fft_bench(c: &mut Criterion) {
let num_vars = 13;
let ml_poly = poly(num_vars);
let ml_poly_evals = ml_poly.evals.clone();
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let y = ml_poly.eval(&open_at);
let mut config = config_base();
config.fft_domain = Some(rs_config::smooth::gen_config::<F>(
config.num_cols(ml_poly.evals.len()),
@ -47,8 +49,8 @@ fn pcs_fft_bench(c: &mut Criterion) {
let pcs = TensorMultilinearPCS::<F>::new(config.clone());
let mut transcript = Transcript::new(b"bench");
let comm = pcs.commit(&black_box(ml_poly.clone()));
pcs.open(&comm, &ml_poly, &open_at, &mut transcript);
let comm = pcs.commit(black_box(&ml_poly_evals));
pcs.open(&comm, &ml_poly_evals, &open_at, y, &mut transcript);
})
});
}
@ -58,10 +60,13 @@ fn pcs_ecfft_bench(c: &mut Criterion) {
let num_vars = 13;
let ml_poly = poly(num_vars);
let ml_poly_evals = ml_poly.evals.clone();
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let y = ml_poly.eval(&open_at);
let mut config = config_base();
config.ecfft_config = Some(rs_config::ecfft::gen_config::<F>(
config.num_cols(ml_poly.evals.len()),
@ -73,8 +78,8 @@ fn pcs_ecfft_bench(c: &mut Criterion) {
let pcs = TensorMultilinearPCS::<F>::new(config.clone());
let mut transcript = Transcript::new(b"bench");
let comm = pcs.commit(&black_box(ml_poly.clone()));
pcs.open(&comm, &ml_poly, &open_at, &mut transcript);
let comm = pcs.commit(black_box(&ml_poly_evals));
pcs.open(&comm, &ml_poly_evals, &open_at, y, &mut transcript);
})
});
}
@ -86,6 +91,6 @@ fn set_duration() -> Criterion {
criterion_group! {
name = benches;
config = set_duration();
targets = pcs_ecfft_bench
targets = pcs_ecfft_bench, pcs_fft_bench
}
criterion_main!(benches);

+ 2
- 2
tensor_pcs/src/lib.rs

@ -16,7 +16,7 @@ impl FieldExt for halo2curves::pasta::Fp {}
pub use ecfft;
pub use polynomial::eq_poly::EqPoly;
pub use polynomial::sparse_ml_poly::SparseMLPoly;
pub use polynomial::ml_poly::MlPoly;
pub use tensor_rs_pcs::{TensorMLOpening, TensorMultilinearPCS, TensorRSMultilinearPCSConfig};
pub use transcript::{AppendToTranscript, Transcript};
pub use utils::{det_num_cols, det_num_rows};
pub use utils::{det_num_cols, det_num_rows, dot_prod};

shockwave_plus/src/polynomial/ml_poly.rs → tensor_pcs/src/polynomial/ml_poly.rs

@ -1,4 +1,4 @@
use tensor_pcs::EqPoly;
use crate::polynomial::eq_poly::EqPoly;
use crate::FieldExt;

+ 1
- 1
tensor_pcs/src/polynomial/mod.rs

@ -1,2 +1,2 @@
pub mod eq_poly;
pub mod sparse_ml_poly;
pub mod ml_poly;

+ 56
- 64
tensor_pcs/src/tensor_rs_pcs.rs

@ -6,7 +6,6 @@ use serde::{Deserialize, Serialize};
use crate::fft::fft;
use crate::polynomial::eq_poly::EqPoly;
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
use crate::tensor_code::TensorCode;
use crate::transcript::Transcript;
use crate::utils::{det_num_cols, det_num_rows, dot_prod, hash_all, rlc_rows, sample_indices};
@ -57,32 +56,32 @@ impl TensorMultilinearPCS {
Self { config }
}
pub fn commit(&self, poly: &SparseMLPoly<F>) -> CommittedTensorCode<F> {
pub fn commit(&self, ml_poly_evals: &[F]) -> CommittedTensorCode<F> {
// Merkle commit to the evaluations of the polynomial
let tensor_code = self.encode_zk(poly);
let tree = tensor_code.commit(
self.config.num_cols(poly.num_entries()),
self.config.num_rows(poly.num_entries()),
);
let n = ml_poly_evals.len();
assert!(n.is_power_of_two());
let tensor_code = self.encode_zk(ml_poly_evals);
let tree = tensor_code.commit(self.config.num_cols(n), self.config.num_rows(n));
tree
}
pub fn open(
&self,
u_hat_comm: &CommittedTensorCode<F>,
poly: &SparseMLPoly<F>,
// TODO: Remove poly and use u_hat_comm
ml_poly_evals: &[F],
point: &[F],
eval: F,
transcript: &mut Transcript<F>,
) -> TensorMLOpening<F> {
let num_cols = self.config.num_cols(poly.num_entries());
let num_rows = self.config.num_rows(poly.num_entries());
debug_assert_eq!(poly.num_vars, point.len());
let n = ml_poly_evals.len();
assert!(n.is_power_of_two());
let num_vars = (n as f64).log2() as usize;
let mut padded_evals = poly.evals.clone();
padded_evals.resize(
num_cols * num_rows,
(2usize.pow(poly.num_vars as u32), F::ZERO),
);
let num_cols = self.config.num_cols(n);
let num_rows = self.config.num_rows(n);
debug_assert_eq!(num_vars, point.len());
// ########################################
// Testing phase
@ -94,12 +93,7 @@ impl TensorMultilinearPCS {
let r_u = transcript.challenge_vec(num_rows);
let u = (0..num_rows)
.map(|i| {
padded_evals[(i * num_cols)..((i + 1) * num_cols)]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.map(|i| ml_poly_evals[(i * num_cols)..((i + 1) * num_cols)].to_vec())
.collect::<Vec<Vec<F>>>();
// Random linear combination of the rows of the polynomial in a tensor structure
@ -140,7 +134,7 @@ impl TensorMultilinearPCS {
TensorMLOpening {
x: point.to_vec(),
y: poly.eval(&point),
y: eval,
eval_query_leaves: eval_queries,
test_query_leaves: test_queries,
u_hat_comm: u_hat_comm.committed_tree.root(),
@ -151,7 +145,7 @@ impl TensorMultilinearPCS {
base_opening: BaseOpening {
hashes: u_hat_comm.committed_tree.column_roots.clone(),
},
poly_num_vars: poly.num_vars,
poly_num_vars: num_vars,
}
}
}
@ -341,25 +335,16 @@ impl TensorMultilinearPCS {
u_hat_openings
}
fn encode_zk(&self, poly: &SparseMLPoly<F>) -> TensorCode<F> {
let num_rows = self.config.num_rows(poly.num_entries());
let num_cols = self.config.num_cols(poly.num_entries());
fn encode_zk(&self, ml_poly_evals: &[F]) -> TensorCode<F> {
let n = ml_poly_evals.len();
assert!(n.is_power_of_two());
// Pad the sparse evaluations with zeros
let mut evals = poly.evals.clone();
evals.resize(
num_cols * num_rows,
(2usize.pow(poly.num_vars as u32), F::ZERO),
);
debug_assert_eq!(evals.len(), num_cols * num_rows);
let num_rows = self.config.num_rows(n);
let num_cols = self.config.num_cols(n);
debug_assert_eq!(n, num_cols * num_rows);
let codewords = (0..num_rows)
.map(|i| {
evals[i * num_cols..(i + 1) * num_cols]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.map(|i| &ml_poly_evals[i * num_cols..(i + 1) * num_cols])
.map(|row| self.split_encode(&row))
.collect::<Vec<Vec<F>>>();
@ -369,42 +354,44 @@ impl TensorMultilinearPCS {
#[cfg(test)]
mod tests {
use ::ecfft::find_coset_offset;
use super::*;
use crate::polynomial::ml_poly::MlPoly;
use crate::rs_config::{ecfft, good_curves::secp256k1::secp256k1_good_curve, naive, smooth};
const TEST_NUM_VARS: usize = 8;
const TEST_L: usize = 10;
fn test_poly<F: FieldExt>() -> SparseMLPoly<F> {
fn test_poly_evals<F: FieldExt>() -> MlPoly<F> {
let num_entries: usize = 2usize.pow(TEST_NUM_VARS as u32);
let evals = (0..num_entries)
.map(|i| (i, F::from(i as u64)))
.collect::<Vec<(usize, F)>>();
.map(|i| F::from((i + 1) as u64))
.collect::<Vec<F>>();
let ml_poly = SparseMLPoly::new(evals, TEST_NUM_VARS);
ml_poly
MlPoly::new(evals)
}
fn prove_and_verify<F: FieldExt>(ml_poly: SparseMLPoly<F>, pcs: TensorMultilinearPCS<F>) {
let comm = pcs.commit(&ml_poly);
fn prove_and_verify<F: FieldExt>(ml_poly: &MlPoly<F>, pcs: TensorMultilinearPCS<F>) {
let ml_poly_evals = &ml_poly.evals;
let open_at = (0..ml_poly.num_vars)
let comm = pcs.commit(ml_poly_evals);
let ml_poly_num_vars = (ml_poly_evals.len() as f64).log2() as usize;
let open_at = (0..ml_poly_num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let y = ml_poly.eval(&open_at);
let mut prover_transcript = Transcript::<F>::new(b"test");
prover_transcript.append_bytes(&comm.committed_tree.root);
let opening = pcs.open(&comm, &ml_poly, &open_at, &mut prover_transcript);
let opening = pcs.open(&comm, ml_poly_evals, &open_at, y, &mut prover_transcript);
let mut verifier_transcript = Transcript::<F>::new(b"test");
verifier_transcript.append_bytes(&comm.committed_tree.root);
pcs.verify(&opening, &mut verifier_transcript);
}
fn config_base<F: FieldExt>(ml_poly: &SparseMLPoly<F>) -> TensorRSMultilinearPCSConfig<F> {
fn config_base<F: FieldExt>() -> TensorRSMultilinearPCSConfig<F> {
let expansion_factor = 2;
TensorRSMultilinearPCSConfig::<F> {
@ -420,23 +407,27 @@ mod tests {
fn test_tensor_pcs_fft() {
type F = halo2curves::pasta::Fp;
// FFT config
let ml_poly = test_poly();
let mut config = config_base(&ml_poly);
config.fft_domain = Some(smooth::gen_config(config.num_cols(ml_poly.num_entries())));
let ml_poly = test_poly_evals();
let mut config = config_base();
// The test polynomial has 2^k non-zero entries
let num_entries = ml_poly.evals.len();
config.fft_domain = Some(smooth::gen_config(config.num_cols(num_entries)));
// Test FFT PCS
let tensor_pcs_fft = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_fft);
prove_and_verify(&ml_poly, tensor_pcs_fft);
}
#[test]
fn test_tensor_pcs_ecfft() {
type F = halo2curves::secp256k1::Fp;
let ml_poly = test_poly();
let ml_poly = test_poly_evals();
let mut config = config_base(&ml_poly);
let mut config = config_base();
let num_cols = config.num_cols(ml_poly.num_entries());
let n = ml_poly.evals.len();
let num_cols = config.num_cols(n);
let k = ((num_cols * config.expansion_factor).next_power_of_two() as f64).log2() as usize;
let (curve, coset_offset) = secp256k1_good_curve(k);
@ -444,21 +435,22 @@ mod tests {
// Test FFT PCS
let tensor_pcs_ecf = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_ecf);
prove_and_verify(&ml_poly, tensor_pcs_ecf);
}
#[test]
fn test_tensor_pcs_naive() {
type F = halo2curves::secp256k1::Fp;
// FFT config
let ml_poly = test_poly();
let ml_poly = test_poly_evals();
let n = ml_poly.evals.len();
// Naive config
let mut config = config_base(&ml_poly);
config.domain_powers = Some(naive::gen_config(config.num_cols(ml_poly.num_entries())));
let mut config = config_base();
config.domain_powers = Some(naive::gen_config(config.num_cols(n)));
// Test FFT PCS
let tensor_pcs_naive = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_naive);
prove_and_verify(&ml_poly, tensor_pcs_naive);
}
}

+ 2
- 0
tensor_pcs/src/utils.rs

@ -76,6 +76,7 @@ pub fn sample_indices(
}
pub fn det_num_cols(num_entries: usize, l: usize) -> usize {
assert!(num_entries.is_power_of_two());
let num_entries_sqrt = (num_entries as f64).sqrt() as usize;
// The number of columns must be a power of two
// to tensor-query the polynomial evaluation
@ -84,6 +85,7 @@ pub fn det_num_cols(num_entries: usize, l: usize) -> usize {
}
pub fn det_num_rows(num_entries: usize, l: usize) -> usize {
assert!(num_entries.is_power_of_two());
// The number of rows must be a power of two
// to tensor-query the polynomial evaluation
let num_rows = (num_entries / det_num_cols(num_entries, l)).next_power_of_two();

Loading…
Cancel
Save