You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

432 lines
14 KiB

use crate::rs_config::ecfft::ECFFTConfig;
use crate::tree::BaseOpening;
use crate::FieldExt;
use ecfft::extend;
use serde::{Deserialize, Serialize};
use crate::fft::fft;
use crate::polynomial::eq_poly::EqPoly;
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
use crate::tensor_code::TensorCode;
use crate::transcript::Transcript;
use crate::utils::{dot_prod, hash_all, rlc_rows, sample_indices};
use super::tensor_code::CommittedTensorCode;
#[derive(Clone)]
pub struct TensorRSMultilinearPCSConfig<F: FieldExt> {
pub expansion_factor: usize,
pub domain_powers: Option<Vec<Vec<F>>>,
pub fft_domain: Option<Vec<F>>,
pub ecfft_config: Option<ECFFTConfig<F>>,
pub l: usize,
pub num_entries: usize,
pub num_rows: usize,
}
impl<F: FieldExt> TensorRSMultilinearPCSConfig<F> {
pub fn num_cols(&self) -> usize {
self.num_entries / self.num_rows()
}
pub fn num_rows(&self) -> usize {
self.num_rows
}
}
#[derive(Clone)]
pub struct TensorMultilinearPCS<F: FieldExt> {
config: TensorRSMultilinearPCSConfig<F>,
}
#[derive(Clone, Serialize, Deserialize)]
pub struct TensorMLOpening<F: FieldExt> {
pub x: Vec<F>,
pub y: F,
pub base_opening: BaseOpening,
pub test_query_leaves: Vec<Vec<F>>,
pub eval_query_leaves: Vec<Vec<F>>,
pub u_hat_comm: [u8; 32],
pub test_u_prime: Vec<F>,
pub test_r_prime: Vec<F>,
pub eval_r_prime: Vec<F>,
pub eval_u_prime: Vec<F>,
}
impl<F: FieldExt> TensorMultilinearPCS<F> {
pub fn new(config: TensorRSMultilinearPCSConfig<F>) -> Self {
Self { config }
}
pub fn commit(&self, poly: &SparseMLPoly<F>) -> CommittedTensorCode<F> {
// Merkle commit to the evaluations of the polynomial
let tensor_code = self.encode_zk(poly);
let tree = tensor_code.commit(self.config.num_cols(), self.config.num_rows());
tree
}
pub fn open(
&self,
u_hat_comm: &CommittedTensorCode<F>,
poly: &SparseMLPoly<F>,
point: &[F],
transcript: &mut Transcript<F>,
) -> TensorMLOpening<F> {
let num_cols = self.config.num_cols();
let num_rows = self.config.num_rows();
debug_assert_eq!(poly.num_vars, point.len());
// ########################################
// Testing phase
// Prove the consistency between the random linear combination of the evaluation tensor (u_prime)
// and the tensor codeword (u_hat)
// ########################################
// Derive the challenge vector;
let r_u = transcript.challenge_vec(num_rows);
let u = (0..num_rows)
.map(|i| {
poly.evals[(i * num_cols)..((i + 1) * num_cols)]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.collect::<Vec<Vec<F>>>();
// Random linear combination of the rows of the polynomial in a tensor structure
let test_u_prime = rlc_rows(u.clone(), &r_u);
// Random linear combination of the blinder
let blinder = u_hat_comm
.tensor_codeword
.0
.iter()
.map(|row| row[(row.len() / 2)..].to_vec())
.collect::<Vec<Vec<F>>>();
debug_assert_eq!(blinder[0].len(), u_hat_comm.tensor_codeword.0[0].len() / 2);
let test_r_prime = rlc_rows(blinder.clone(), &r_u);
let num_indices = self.config.l;
let indices = sample_indices(num_indices, num_cols * 2, transcript);
let test_queries = self.test_phase(&indices, &u_hat_comm);
// ########################################
// Evaluation phase
// Prove the consistency
// ########################################
// Get the evaluation point
let mut point_rev = point.to_vec();
point_rev.reverse();
let log2_num_rows = (num_rows as f64).log2() as usize;
let q1 = EqPoly::new(point_rev[0..log2_num_rows].to_vec()).evals();
let eval_r_prime = rlc_rows(blinder, &q1);
let eval_u_prime = rlc_rows(u.clone(), &q1);
let eval_queries = self.test_phase(&indices, &u_hat_comm);
TensorMLOpening {
x: point.to_vec(),
y: poly.eval(&point_rev),
eval_query_leaves: eval_queries,
test_query_leaves: test_queries,
u_hat_comm: u_hat_comm.committed_tree.root(),
test_u_prime,
test_r_prime,
eval_r_prime,
eval_u_prime,
base_opening: BaseOpening {
hashes: u_hat_comm.committed_tree.column_roots.clone(),
},
}
}
}
impl<F: FieldExt> TensorMultilinearPCS<F> {
pub fn verify(&self, opening: &TensorMLOpening<F>, transcript: &mut Transcript<F>) {
let num_rows = self.config.num_rows();
let num_cols = self.config.num_cols();
// Verify the base opening
let base_opening = &opening.base_opening;
base_opening.verify(opening.u_hat_comm);
// ########################################
// Verify test phase
// ########################################
let r_u = transcript.challenge_vec(num_rows);
println!("r_u = {:?}", r_u);
let test_u_prime_rs_codeword = self
.rs_encode(&opening.test_u_prime)
.iter()
.zip(opening.test_r_prime.iter())
.map(|(c, r)| *c + *r)
.collect::<Vec<F>>();
let num_indices = self.config.l;
let indices = sample_indices(num_indices, num_cols * 2, transcript);
debug_assert_eq!(indices.len(), opening.test_query_leaves.len());
for (expected_index, leaves) in indices.iter().zip(opening.test_query_leaves.iter()) {
// Verify that the hashes of the leaves equals the corresponding column root
let leaf_bytes = leaves
.iter()
.map(|x| x.to_repr())
.collect::<Vec<[u8; 32]>>();
let column_root = hash_all(&leaf_bytes);
let expected_column_root = base_opening.hashes[*expected_index];
assert_eq!(column_root, expected_column_root);
let mut sum = F::ZERO;
for (leaf, r_i) in leaves.iter().zip(r_u.iter()) {
sum += *r_i * *leaf;
}
assert_eq!(sum, test_u_prime_rs_codeword[*expected_index]);
}
// ########################################
// Verify evaluation phase
// ########################################
let mut x_rev = opening.x.clone();
x_rev.reverse();
let log2_num_rows = (num_rows as f64).log2() as usize;
let q1 = EqPoly::new(x_rev[0..log2_num_rows].to_vec()).evals();
let q2 = EqPoly::new(x_rev[log2_num_rows..].to_vec()).evals();
let eval_u_prime_rs_codeword = self
.rs_encode(&opening.eval_u_prime)
.iter()
.zip(opening.eval_r_prime.iter())
.map(|(c, r)| *c + *r)
.collect::<Vec<F>>();
debug_assert_eq!(q1.len(), opening.eval_query_leaves[0].len());
debug_assert_eq!(indices.len(), opening.test_query_leaves.len());
for (expected_index, leaves) in indices.iter().zip(opening.eval_query_leaves.iter()) {
// TODO: Don't need to check the leaves again?
// Verify that the hashes of the leaves equals the corresponding column root
let leaf_bytes = leaves
.iter()
.map(|x| x.to_repr())
.collect::<Vec<[u8; 32]>>();
let column_root = hash_all(&leaf_bytes);
let expected_column_root = base_opening.hashes[*expected_index];
assert_eq!(column_root, expected_column_root);
let mut sum = F::ZERO;
for (leaf, q1_i) in leaves.iter().zip(q1.iter()) {
sum += *q1_i * *leaf;
}
assert_eq!(sum, eval_u_prime_rs_codeword[*expected_index]);
}
let expected_eval = dot_prod(&opening.eval_u_prime, &q2);
assert_eq!(expected_eval, opening.y);
}
fn split_encode(&self, message: &[F]) -> Vec<F> {
let codeword = self.rs_encode(message);
let mut rng = rand::thread_rng();
let blinder = (0..codeword.len())
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let mut randomized_codeword = codeword
.iter()
.zip(blinder.clone().iter())
.map(|(c, b)| *b + *c)
.collect::<Vec<F>>();
randomized_codeword.extend_from_slice(&blinder);
debug_assert_eq!(randomized_codeword.len(), codeword.len() * 2);
randomized_codeword
}
fn rs_encode(&self, message: &[F]) -> Vec<F> {
let codeword = if self.config.fft_domain.is_some() {
let fft_domain = self.config.fft_domain.as_ref().unwrap();
let mut padded_coeffs = message.clone().to_vec();
padded_coeffs.resize(fft_domain.len(), F::ZERO);
let codeword = fft(&padded_coeffs, &fft_domain);
codeword
} else if self.config.ecfft_config.is_some() {
let ecfft_config = self.config.ecfft_config.as_ref().unwrap();
assert_eq!(
message.len() * self.config.expansion_factor,
ecfft_config.domain[0].len()
);
let extended_evals = extend(
message,
&ecfft_config.domain,
&ecfft_config.matrices,
&ecfft_config.inverse_matrices,
0,
);
let codeword = [message.to_vec(), extended_evals].concat();
codeword
} else {
let domain_powers = self.config.domain_powers.as_ref().unwrap();
assert_eq!(message.len(), domain_powers[0].len());
assert_eq!(
message.len() * self.config.expansion_factor,
domain_powers.len()
);
let codeword = domain_powers
.iter()
.map(|powers| {
message
.iter()
.zip(powers.iter())
.fold(F::ZERO, |acc, (m, p)| acc + *m * *p)
})
.collect::<Vec<F>>();
codeword
};
codeword
}
fn test_phase(&self, indices: &[usize], u_hat_comm: &CommittedTensorCode<F>) -> Vec<Vec<F>> {
let num_cols = self.config.num_cols() * 2;
// Query the columns of u_hat
let num_indices = self.config.l;
let u_hat_openings = indices
.iter()
.map(|index| u_hat_comm.query_column(*index, num_cols))
.collect::<Vec<Vec<F>>>();
debug_assert_eq!(u_hat_openings.len(), num_indices);
u_hat_openings
}
fn encode_zk(&self, poly: &SparseMLPoly<F>) -> TensorCode<F> {
let num_rows = self.config.num_rows();
let num_cols = self.config.num_cols();
let codewords = (0..num_rows)
.map(|i| {
poly.evals[i * num_cols..(i + 1) * num_cols]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.map(|row| self.split_encode(&row))
.collect::<Vec<Vec<F>>>();
TensorCode(codewords)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::rs_config::{ecfft, naive, smooth};
const TEST_NUM_VARS: usize = 10;
const TEST_L: usize = 10;
fn test_poly<F: FieldExt>() -> SparseMLPoly<F> {
let num_entries: usize = 2usize.pow(TEST_NUM_VARS as u32);
let evals = (0..num_entries)
.map(|i| (i, F::from(i as u64)))
.collect::<Vec<(usize, F)>>();
let ml_poly = SparseMLPoly::new(evals, TEST_NUM_VARS);
ml_poly
}
fn prove_and_verify<F: FieldExt>(ml_poly: SparseMLPoly<F>, pcs: TensorMultilinearPCS<F>) {
let comm = pcs.commit(&ml_poly);
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let mut prover_transcript = Transcript::<F>::new(b"test");
prover_transcript.append_bytes(&comm.committed_tree.root);
let opening = pcs.open(&comm, &ml_poly, &open_at, &mut prover_transcript);
let mut verifier_transcript = Transcript::<F>::new(b"test");
verifier_transcript.append_bytes(&comm.committed_tree.root);
pcs.verify(&opening, &mut verifier_transcript);
}
fn config_base<F: FieldExt>(ml_poly: &SparseMLPoly<F>) -> TensorRSMultilinearPCSConfig<F> {
let num_vars = ml_poly.num_vars;
let num_evals = 2usize.pow(num_vars as u32);
let num_rows = 2usize.pow((num_vars / 2) as u32);
let expansion_factor = 2;
TensorRSMultilinearPCSConfig::<F> {
expansion_factor,
domain_powers: None,
fft_domain: None,
ecfft_config: None,
l: TEST_L,
num_entries: num_evals,
num_rows,
}
}
#[test]
fn test_tensor_pcs_fft() {
type F = halo2curves::pasta::Fp;
// FFT config
let ml_poly = test_poly();
let mut config = config_base(&ml_poly);
config.fft_domain = Some(smooth::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_fft = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_fft);
}
#[test]
fn test_tensor_pcs_ecfft() {
type F = halo2curves::secp256k1::Fp;
let ml_poly = test_poly();
let mut config = config_base(&ml_poly);
config.ecfft_config = Some(ecfft::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_ecf = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_ecf);
}
#[test]
fn test_tensor_pcs_naive() {
type F = halo2curves::secp256k1::Fp;
// FFT config
let ml_poly = test_poly();
// Naive config
let mut config = config_base(&ml_poly);
config.domain_powers = Some(naive::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_naive = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_naive);
}
}