|
|
# sigmabus-poc
Proof of concept implementation of Sigmabus https://eprint.iacr.org/2023/1406, a cool idea by [George Kadianakis](https://twitter.com/asn_d6) and [Mary Maller](https://www.marymaller.com/) and [Andrija Novakovic](https://twitter.com/AndrijaNovakov6).
> Experimental code, do not use in production.
This PoC implements [Sigmabus](https://eprint.iacr.org/2023/1406) to prove & verify that $X = x \cdot G \in \mathbb{G}$ for a public input $X \in \mathbb{G}$ and a private input $x \in \mathbb{F}_r$ ($\mathbb{G}$'s ScalarField), while the circuit is defined on $\mathbb{F}_r$ (note that $\mathbb{G}$ coordinates are on $\mathbb{F}_q$ ($\mathbb{G}$'s BaseField)).
Proving $X = x \cdot G$ with a 'traditional' approach in a zkSNARK circuit, would require non-native arithmetic for computing the scalar multiplication $x \cdot G \in \mathbb{G}$ over $\mathbb{F}_r$, which would take lot of constraints. The number of constraints in the circuit for this Sigmabus instantiation mainly depends on the constraints needed for 2 Poseidon hashes.
Let $\mathbb{G}$ be [BN254](https://hackmd.io/@jpw/bn254)'s $G1$, an example of usage would be: ```rust // generate the trusted setup let params = Sigmabus::<Bn254>::setup(&mut rng, &poseidon_config);
// compute X = x * G let x = Fr::rand(&mut rng); let X = G1Projective::generator().mul(x);
// generate Sigmabus proof for X==x*G let mut transcript_p = PoseidonTranscript::<G1Projective>::new(&poseidon_config); let proof = Sigmabus::<Bn254>::prove(&mut rng, ¶ms, &mut transcript_p, x);
// verify Sigmabus proof for X==x*G let mut transcript_v = PoseidonTranscript::<G1Projective>::new(&poseidon_config); Sigmabus::<Bn254>::verify(¶ms, &mut transcript_v, proof, X).unwrap(); ```
|