

2018-11-30

RSA and Homomorphic Multiplication
https://arnaucube.com

https://github.com/arnaucube

https://twitter.com/arnaucube

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube

Intro

Public key cryptography

Basics of modular arithmetic

Brief history of RSA

Keys generation

Prime numbers

Encryption

Decryption

What's going on in encryption and decryption?

Signature

Verification of the signature

Homomorphic Multiplication with RSA

Resources

Intro
I'm not an expert on the field, neither a mathematician. Just an
engineer with interest for cryptography

Short talk (15 min), with the objective to make a practical
introduction to the RSA cryptosystem

Is not a talk about mathematical demostrations, is a talk with
the objective to get the basic notions to be able to do a
practical implementation of the algorithm

After the talk, we will do a practical workshop to implement the
concepts. We can offer support for Go, Rust, Python and
Nodejs (you can choose any other language, but we will not be
able to help)

Public key cryptography

Hello
Alice!

Alice's
private key

Encrypt

6EB69570
08E03CE4

Hello
Alice!

Decrypt

Alice's
public key

Alice

Bob

Some examples:

RSA

Paillier

ECC (Corba el·líptica)

Basics of modular arithmetic
Modulus, mod , %

Remainder after division of two numbers

5 mod 12 = 5
14 mod 12 = 2
83 mod 10 = 3

5 + 3 mod 6 = 8 mod 6 = 2

Brief history of RSA
RSA (Rivest–Shamir–Adleman): Ron Rivest, Adi Shamir,
Leonard Adleman

year 1977

one of the first public key cryptosystems

based on the difficulty of factorization of the product of two big
prime numbers

Prime numbers
We need an asymmetric key, in a way where we can decrypt a
message encrypted with the asymetric key

Without allowing to find the private key from the public key

in RSA we resolve this with factorization of prime numbers

using prime numbers for p and q, it's difficult factorize n to
obtain p and q, where n = p ∗ q

Example:
If we know n which we need to find the p and q values where
p ∗ q = n:

n = 35

To obtain the possible factors, is needed to brute force trying
different combinations, until we find:

p = 5
q = 7

In this case is easy as it's a simple example with small numbers.
The idea is to do this with big prime numbers

Another exmample with more bigger prime numbers:

n = 272604817800326282194810623604278579733

From n, I don't have a 'direct' way to obtain p and q. I need to try
by brute force the different values until finding a correct
combination.

p = 17975460804519255043
q = 15165386899666573831
n = 17975460804519255043 * 15165386899666573831 = 272604817800326282194810623604278579733

If we do this with non prime numbers:

n = 32
We can factorize 32 = 2 * 2 * 2 * 2 * 2
combining that values in two values X * Y
for example (2*2*2) * (2*2) = 8*4 = 32
we can also take 2 * (2*2*2*2) = 2 * 16 = 32
...

One example with bigger non prime numbers:

n = 272604817800326282227951471308464408608
We can take:
p = 17975460804519255044
q = 15165386899666573832

Or also:
p = 2
q = 136302408900163141113975735654232204304
...

In the real world:

https://en.wikipedia.org/wiki/RSA_numbers

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge#The_p
rizes_and_records

So, we are basing this in the fact that is not easy to factorize big
numbers composed by big primes.

https://en.wikipedia.org/wiki/RSA_numbers
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge#The_prizes_and_records

Keys generation
PubK: e, n

PrivK: d, n

are choosen randomly 2 big prime numbers p and q, that will
be secrets

n = p ∗ q

λ is the Carmichael function
λ(n) = (p − 1) * (q − 1)

Choose a prime number e that satisfies 1 < e < λ(n) and gcd(e,
λ(n))=1

Usually in examples is used e = 2 6 + 1 = 65537

d such as e * d = 1 mod λ(n)
d = e^(-1) mod λ(n) = e modinv λ(n)

1

Example

p = 3

q = 11

e = 7 value choosen between 1 and λ(n)=20, where λ(n) is
not divisible by this value

n = 3 * 11 = 33

λ(n) = (3-1) * (11-1) = 2 * 10 = 20

d such as 7 * d = 1 mod 20

d = 3

PubK: e=7, n=33

PrivK: d=3, n=33

Naive code

def egcd(a, b):
 if a == 0:
 return (b, 0, 1)
 g, y, x = egcd(b%a,a)
 return (g, x - (b//a) * y, y)

def modinv(a, m):
 g, x, y = egcd(a, m)
 if g != 1:
 raise Exception('No modular inverse')
 return x%m

def newKeys():
 p = number.getPrime(n_length)
 q = number.getPrime(n_length)

 # pubK e, n
 e = 65537
 n = p*q
 pubK = PubK(e, n)

 # privK d, n
 phi = (p-1) * (q-1)
 d = modinv(e, phi)
 privK = PrivK(d, n)

 return({'pubK': pubK, 'privK': privK})

Encryption
Brenna wants to send the message m to Alice, so, will use the
Public Key from Alice to encrypt m

m powered at e of the public key from Alice

evaluate at modulus of n

Example

message to encrypt m = 5

receiver public key: e=7, n=33

c = 5 ^ 7 mod 33 = 78125 mod 33 = 14

Naive code

def encrypt(pubK, m):
 c = (m ** pubK.e) % pubK.n
 return c

Decrypt
from an encrypted value c

c powered at d of the private key of the person to who the
message was encrypted

evaluate at modulus of n

Example

receiver private key, PrivK: d=3, n=33

m = 14 ^ 3 mod 33 = 2744 mod 33 = 5

Naive code

def decrypt(privK, c):
 m_d = (c ** privK.d) % privK.n
 return m_d

What's going on when encrypting and
decrypting?

n = pq
e
phi = (p-1)(q-1)
d = e^-1 mod (phi) = e^-1 mod (p-1)(q-1)

encrypt
c = m^e mod n = m^e mod pq

decrypt
m' = c^d mod n = c ^(e^-1 mod (p-1)(q-1)) mod pq =
 = (m^e)^(e^-1 mod (p-1)(q-1)) mod pq =
 = m^(e * e^-1 mod (p-1)(q-1)) mod pq =
 = m^(1 mod (p-1)(q-1)) mod pq =
 [theorem in which we're not going into details]
 a ^ (1 mod λ(N)) mod N = a mod N
 [/theorem]
 = m mod pq

Signature
encryption operation but using PrivK instead of PubK, and
PubK instead of PrivK

having a message m

power of m at d of the private key from the signer person

evaluated at modulus n

Example

private key of the person emitter of the signature: d = 3, n =
33

message to be signed: m=5

signature: s = 5 ** 3 % 33 = 26

Naive code

def sign(privK, m):
 s = (m ** privK.d) % privK.n
 return s

Verification of the signature
having message m and the signature s

elevate m at e of the public key from the signer

evaluate at modulus of n

Example

public key from the singer person e=7, n=33

message m=5

signature s=26

verification v = 26**7 % 33 = 5

check that we have recovered the message (that m is
equivalent to v) m = 5 = v = 5

Naive code

def verifySign(pubK, s, m):
 v = (s ** pubK.e) % privK.n
 return v==m

Homomorphic Multiplication
from two values a and b

encrypted are a and b

we can compute the multiplication of the two encrypted values,
obtaining the result encrypted

the encrypted result from the multiplication is calculated doing:
c = a ∗ b modn

we can decrypt c and we will obtain c, equivalent to a ∗ b

Why:

((a^e mod n) * (b^e mod n)) mod n =
= (a^e * b^e mod n) mod n = (a*b)^e mod n

encr encr

encr encr encr

encr

Example

PubK: e=7, n=33

PrivK: d=3, n=33

a = 5

b = 8

a_encr = 5^7 mod 33 = 78125 mod 33 = 14

b_encr = 8^7 mod 33 = 2097152 mod 33 = 2

c_encr = (14 * 2) mod 33 = 28 mod 33 = 28

c = 28 ^ 3 mod 33 = 21952 mod 33 = 7

c = 7 = a * b % n = 5 * 8 % 33 = 7 , on 5*8 mod 33 = 7

take a n enough big, if not the result will be cropped by the
modulus

Naive code

def homomorphic_mul(pubK, a, b):
 c = (a*b) % pubK.n
 return c

Small demo
[...]

And now... practical implementation
full night long

big ints are your friends

