Shamir's Secret Sharing

e https://arnaucube.com
e https://github.com/arnaucube

e https://twitter.com/arnaucube

2019-07-05

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube

Intro

e I'm not an expert on the field, neither a mathematician. Just an
engineer with interest for cryptography

e Short talk (15 min), with the objective to make a practical
Introduction to the Shamir's Secret Sharing algorithm

e Is not a talk about mathematical demostrations, is a talk with
the objective to get the basic notions to be able to do a
practical implementation of the algorithm

o After the talk, we will do a practical workshop to implement the
concepts. We can offer support for Go, Rust, Python and
Nodejs (you can choose any other language, but we will not be
able to help)

e Cryptographic algorithm
e Created by Adi Shamir, in 1979
o also known by the RS A cryptosystem

= explained in few months ago in a similar talk:
https://github.com/arnaucube/slides/rsa

https://github.com/arnaucube/slides/rsa

What's this about?

e imagine having a password that you want to share with 5
persons, in a way that they need to join their parts to get the
original password

e take the password, split it in 5 parts, and give one part to each
one

e when they need to recover it, they just need to get together,
put all the pieces and recover the password (the secret)

e this, has the problem that if a person looses its part, the secret
will not be recovered anymore.. luckly we have a solution here:

e Shamir's Secret Sharing:
o from a secret to be shared, we generate 5 parts, but we
can specify a number of parts that are needed to recover
the secret

o so for example, we generate 5 parts, where we will need
only 3 of that 5 parts to recover the secret, and the order
doesn't matter

o we have the ability to define the thresholds of M parts to
be created, and /N parts to be able the recover

e 2 points are sufficient to define a line

e 3 points are sufficient to define a parabola

e 4 points are sufficient to define a cubic curve

e K points are suficient to define a polynomial of degree k — 1

We can create infinity of polynomials of degree 2, that goes through

2 points, but with 3 points, we can define a polynomial of degree 2
unique.

=

Naming

e s :.Ssecret
e m: number of parts to be created
e n : number of minimum parts necessary to recover the secret

e p :random prime number, the Finite Field will be over that
value

Secret generation

e We want that are necessary n parts of m to recover s
o wheren < m

e need to create a polynomial of degree n — 1
f(z) = oo+ a1z + aoz® + azz® + ... + +a,_ 12"}
e where ¢« is the secret s

e (; are random values that build the polynomial
*where ¢ IS the secret to share, and «; are the random

values inside the F'initeField

f(@) = ap+ a1z + avz® + azz® + ... + +a, 12"

« the packets that we will generate are P = (z, f(x))
o where x is each one of the values between 1 and m

= P = (1, (1))
= P> = (2, f(2))
= P3 = (3, f(3))

- P’m:(maf(m))

Secret recovery

e |n order to recover the secret s, we will need a minimum of n
points of the polynomial
o the order doesn't matter

o with that n parts, we do Lagrange Interpolation/Polynomial
Interpolation

Polynomial Interpolation / Lagrange
Interpolation

e for a group of points, we can find the smallest degree
polynomial that goees through all that points
o this polynomial is unique for each group of points

— filx] (%) fa(%] fa(k) ===== [ix}

.|.-|.-|.-|||||.-|r|r| l—.l<l._

L(z) = >.7 o ysli()

oy = [2=t - o) | Eosa) Gosn) | oo

odnck Ti—%m (i —w0) (% —wi) (7 —wi) (2 —ap)’
mj

Wikipedia example

*example over real numbers, in the practical world, we use the
algorithm in the Finite Field over p

(more details: https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Problem)

e s =1234
om:6
en =23

e f(z) = ag+ a1z + asz?
ooy =8 = 1234

o a1 = 166 (random)
o ag = 94 (random)
e f(z) =1234 + 1662 + 94z?

https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Problem

e f(z)= 1234+ 166x + 94z*

« we calculate the points P = (x, f(x))
o where x is each one of the values between 1 and m

e P = (1, £(1) = (1,1494)
- Py = (2, £(2)) = (2,1942)
. Py = (3, £(3)) = (3,2578)
« Py = (4, £(4)) = (4,3402)
« Py = (5, £(5)) = (5,4414)
» Py = (6, f(6)) — (6, 5614)

e to recover the secret, let's imagine that we take the packets 2,
4,5
o (xg,Yo) = (2,1942)
0 (xo,yg) = (4, 3402)
> (%0, y0) = (5,4414)

e |et's calculate the Lagrange Interpolation

T— T T — To r—4 -5 1, 3 10
by = . = . =—z‘——r+ —
O g — 1 To — T2 2—-4 2-5 6 2 3
T—T) T— T2 x—2 -5 1 , 7
b = . = . _— —x—5
0 T oi—as m—m 4-2 4-5 2¥ 13"
T—Ty T—xT z—2 z—4 1, 8
g = . — . — _2 _
0 T m—a mm—m 5-2 5-4 3% T3

flz)=> ;-
=0

¢i(z)

= yolo + Y141 + Y2l

= 1942 (

1 1
Ew2 — §a: + —0) + 3402 (-%2 + ;w — 5) + 4414 (

2 3

o = 1234 + 166x + 9422

e obtaining f(z) = ag + oy + ayx?, where ay is the secret

S recovered

o where we eavluate the polynomial at f(0), obtaining

g — S

e *we are not going into details now, but if you want in the
practical workshop we can analyze the 'mathematical’ part of

all of this

2

1 2
—x2_9 =
3w T+

And now... practical implementation

e full night long

e big ints are your friends
« L(z) = 3% y;l;(z)

£(z) = H T—Tm _ (x — zo) - (x —zj—1) (z—xj41) - (x — zx)

0imsk T~ Tm (@j—wo) (¢ — o) (25— zi) (25— @)

About

e https://arnaucube.com
e https://github.com/arnaucube

e https://twitter.com/arnaucube

@10 co
2019-07-05

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube

