
Kademlia

@arnaucube

2019-04-26

https://twitter.com/arnaucube

Overview

nodes self sets a random unique ID (UUID)

nodes are grouped in neighbourhoods determined by the node ID distance

Kademlia uses distance calculation between two nodes
distance is computed as XOR (exclusive or) of the two node ID s

XOR acts as the distance function between all node ID s. Why:
distance between a node and itself is zero

is symmetric: distance between A to B is the same to B to A

follows triangle inequality
given A, B, C vertices (points) of a triangle

AB <= (AC + CB)
the distance from A to B is shorter or equal to the sum of the distance
from A to C plus the distance from C to B

so, we get the shortest path

with that last 3 properties we ensure that XOR
captures all of the essential & important features of a "real" distance function

is simple and cheap to calculate

each search iteration comes one bit closer to the target
a basic Kademlia network with 2^n nodes will only take n steps (in worst
case) to find that node

Routing tables

each node has a routing table, that consists of a list for each bit of the node
ID

each entry holds the necessary data to locate another node
IP address, port, node ID , etc

each entry corresponds to a specific distance from the node
for example, node in the Nth position in the list , must have a differing
Nth bit from the node ID

so, the list holds a classification of 128 distances of other nodes in the
network

as nodes are encountered on the network, they are added to the lists
store and retrieval operations

helping other nodes to find a key

every node encountered will be considered for inclusion in the lists

keps network constantly updated
adding resilience to failures and attacks

k-buckets

k is a system wide number

every k-bucket is a list having up to k entries inside

example:
network with k=20

each node will have lists containing up to 20 nodes for a particular bit

possible nodes for each k-bucket decreases quickly
as there will be very few nodes that are that close

since quantity of possible IDs is much larger than any node population, some of
the k-buckets corresponding to very short distances will remain empty

example:

0 1

0 1

0

0 1

0

0

network size: 2^3

max nodes: 8, current nodes: 7

let's take 6th node (110) (black leaf)

3 k-buckets for each node in the network (gray circles)
nodes 0, 1, 2 (000, 001, 010) are in the farthest k-bucket

node 3 (011) is not participating in the network

middle k-bucket contains the nodes 4 and 5 (100, 101)

last k-bucket can only contain node 7 (111)

Each node knows its neighbourhood well and has contact with a few nodes far
away which can help locate other nodes far away.

Kademlia priorizes long connected nodes to remain stored in the k-buckets
as the nodes that have been connected for a long time in a network will
probably remain connected for a long time in the future

when a k-bucket is full and a new node is discovered for that k-bucket
node sends a ping to the last recently seen node in the k-bucket

if the node is still alive, the new node is stored in a secondary list (a
replacement cache)

replacement cache is used if a node in the k-bucket stops responding

basically, new nodes are used only when older nodes disappear

Protocol messages

PING

STORE

FIND_NODE

FIND_VALUE
Each rpc msg includes a random value from the initiator, to ensure that the
response corresponds to the request

Locating nodes

node lookups can proceed asynchronously
α denotes the quantity of simultaneous lookups

α tipically is 3

node initiates a FIND_NODE request to the α nodes in its own k-bucket that
are closest ones to the desired key

when the recipient nodes receive the request, they will look in their k-buckets
and return the k closest nodes to the desired key that they know

the requester will update a results list with the results (node ID s) that receives
keeping the k best ones (the k nodes that are closer to the searched key)

the requester node will select these k best results and issue the request to them

the proces is repeated again and again until get the searched key

iterations continue until no nodes are returned that are closer than the best
previous results

when iterations stop, the best k nodes in the results list are the ones in the
whole network that are the closest to the desired key

node information can be augmented with RTT (round trip times)
when the RTT is spended, another query can be initiated

always the query's number are <= α (quantity of simultaneous lookups)

Locating resources

data (values) located by mapping it to a key
typically a hash is used for the map

locating data follows the same procedure as locating the closest nodes to a key
except the search terminates when a node has the requested value in his
store and returns this value

Data replicating & caching

values are stored at several nodes (k of them)

the node that stores a value
periodically explores the network to find the k nodes close to the key value

to replicate the value onto them

this compensates the disappeared nodes

avoiding "hot spots"
for popular values (might have many requests)

near nodes outside the k closest ones, store the value
this new storing is called cache

caching nodes will drop the value after a certain time
depending on their distance from the key

in this way the value is stored farther away from the key
depending on the quantity of requests

allows popular searches to find a storer more quickly

alleviates possible "hot spots"

not all implementations of Kademlia have these functionallities (replicating &
caching)

in order to remove old information quickly from the system

Joining the network

to join the net, a node must first go through a bootstrap process

bootstrap process
needs to know the IP address & port of another node (bootstrap node)

compute random unique node ID number

inserts the bootstrap node into one of its k-buckets

bootstrap process [...]
perform a node lookup of its own node ID against the bootstrap node

this populate other nodes k-buckets with the new node ID

populate the joining node k-buckets with the nodes in the path between
that node and the bootstrap node

refresh all k-buckets further away than the k-bucket the bootstrap node
falls in

this refresh is a lookup of a random key that is within that k-bucket
range

initially nodes have one k-bucket
when is full, it can be split

