Shamir's Secret Sharing

- https://arnaucube.com
- https://github.com/arnaucube
- https://twitter.com/arnaucube

Intro

- I'm not an expert on the field, neither a mathematician. Just an engineer with interest for cryptography
- Short talk (15 min), with the objective to make a practical introduction to the Shamir's Secret Sharing algorithm
- Is not a talk about mathematical demostrations, is a talk with the objective to get the basic notions to be able to do a practical implementation of the algorithm
- After the talk, we will do a practical workshop to implement the concepts. We can offer support for Go, Rust, Python and Nodejs (you can choose any other language, but we will not be able to help)
- Cryptographic algorithm
- Created by Adi Shamir, in 1979
- also known by the $R S A$ cryptosystem
- explained in few months ago in a similar talk: https://github.com/arnaucube/slides/rsa

What's this about?

- imagine having a password that you want to share with 5 persons, in a way that they need to join their parts to get the original password
- take the password, split it in 5 parts, and give one part to each one
- when they need to recover it, they just need to get together, put all the pieces and recover the password (the secret)
- this, has the problem that if a person looses its part, the secret will not be recovered anymore.. luckly we have a solution here:
- Shamir's Secret Sharing:
- from a secret to be shared, we generate 5 parts, but we can specify a number of parts that are needed to recover the secret
- so for example, we generate 5 parts, where we will need only 3 of that 5 parts to recover the secret, and the order doesn't matter
- we have the ability to define the thresholds of M parts to be created, and N parts to be able the recover
- 2 points are sufficient to define a line
- 3 points are sufficient to define a parabola
- 4 points are sufficient to define a cubic curve
- K points are suficient to define a polynomial of degree $k-1$

We can create infinity of polynomials of degree 2, that goes through 2 points, but with 3 points, we can define a polynomial of degree 2 unique.

Naming

- s : secret
- m : number of parts to be created
- n : number of minimum parts necessary to recover the secret
- p : random prime number, the Finite Field will be over that value

Secret generation

- we want that are necessary n parts of m to recover s
- where $n<m$
- need to create a polynomial of degree $n-1$

$$
f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\ldots++\alpha_{n-1} x^{n-1}
$$

- where α_{0} is the secret s
- α_{i} are random values that build the polynomial *where α_{0} is the secret to share, and α_{i} are the random values inside the FiniteField

$$
f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\ldots++\alpha_{n-1} x^{n-1}
$$

- the packets that we will generate are $P=(x, f(x))$
- where x is each one of the values between 1 and m

> - $P_{1}=(1, f(1))$
> - $P_{2}=(2, f(2))$
> $P_{3}=(3, f(3))$

- $P_{m}=(m, f(m))$

Secret recovery

- in order to recover the secret s, we will need a minimum of n points of the polynomial
- the order doesn't matter
- with that n parts, we do Lagrange Interpolation/Polynomial Interpolation

Polynomial Interpolation / Lagrange Interpolation

- for a group of points, we can find the smallest degree polynomial that goees through all that points
- this polynomial is unique for each group of points

$$
L(x)=\sum_{j=0}^{n} y_{j} l_{j}(x)
$$

$$
\ell_{j}(x):=\prod_{\substack{0 \leq m \leq k \\ m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}}=\frac{\left(x-x_{0}\right)}{\left(x_{j}-x_{0}\right)} \cdots \frac{\left(x-x_{j-1}\right)}{\left(x_{j}-x_{j-1}\right)} \frac{\left(x-x_{j+1}\right)}{\left(x_{j}-x_{j+1}\right)} \cdots \frac{\left(x-x_{k}\right)}{\left(x_{j}-x_{k}\right)}
$$

Wikipedia example

*example over real numbers, in the practical world, we use the algorithm in the Finite Field over p
(more details: https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing\#Problem)

- $s=1234$
- $m=6$
- $n=3$
- $f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}$
- $\alpha_{0}=s=1234$
- $\alpha_{1}=166$ (random)
- $\alpha_{2}=94$ (random)
- $f(x)=1234+166 x+94 x^{2}$
- $f(x)=1234+166 x+94 x^{2}$
- we calculate the points $P=(x, f(x))$
- where x is each one of the values between 1 and m

$$
\begin{aligned}
& \text { - } P_{1}=(1, f(1))=(1,1494) \\
& -P_{2}=(2, f(2))=(2,1942) \\
& -P_{3}=(3, f(3))=(3,2578) \\
& -P_{4}=(4, f(4))=(4,3402) \\
& -P_{5}=(5, f(5))=(5,4414) \\
& - \\
& P_{6}=(6, f(6))=(6,5614)
\end{aligned}
$$

- to recover the secret, let's imagine that we take the packets 2 , 4, 5
- $\left(x_{0}, y_{0}\right)=(2,1942)$
- $\left(x_{0}, y_{0}\right)=(4,3402)$
- $\left(x_{0}, y_{0}\right)=(5,4414)$
- let's calculate the Lagrange Interpolation

$$
\begin{aligned}
& \circ \begin{array}{l}
\ell_{0}=\frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}}=\frac{x-4}{2-4} \cdot \frac{x-5}{2-5}=\frac{1}{6} x^{2}-\frac{3}{2} x+\frac{10}{3} \\
\circ \begin{aligned}
\ell_{1}= & \frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}}=\frac{x-2}{4-2} \cdot \frac{x-5}{4-5}=-\frac{1}{2} x^{2}+\frac{7}{2} x-5
\end{aligned} \\
\qquad \begin{aligned}
\ell_{2}= & \frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{x-2}{5-2} \cdot \frac{x-4}{5-4}=\frac{1}{3} x^{2}-2 x+\frac{8}{3}
\end{aligned} \\
\qquad=\sum_{j=0}^{2} y_{j} \cdot \ell_{j}(x) \\
\\
\quad=y_{0} \ell_{0}+y_{1} \ell_{1}+y_{2} \ell_{2} \\
\quad=1942\left(\frac{1}{6} x^{2}-\frac{3}{2} x+\frac{10}{3}\right)+3402\left(-\frac{1}{2} x^{2}+\frac{7}{2} x-5\right)+4414\left(\frac{1}{3} x^{2}-2 x+\frac{8}{3}\right) \\
\quad=1234+166 x+94 x^{2}
\end{array}
\end{aligned}
$$

- obtaining $f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}$, where α_{0} is the secret s recovered
- where we eavluate the polynomial at $f(0)$, obtaining

$$
\alpha_{0}=s
$$

- *we are not going into details now, but if you want in the practical workshop we can analyze the 'mathematical' part of all of this

And now... practical implementation

- full night long
- big ints are your friends
- $L(x)=\sum_{j=0}^{n} y_{j} l_{j}(x)$
$\ell_{j}(x):=\prod_{\substack{0 \leq m \leqslant k \\ m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}}=\frac{\left(x-x_{0}\right)}{\left(x_{j}-x_{0}\right)} \cdots \frac{\left(x-x_{j-1}\right)}{\left(x_{j}-x_{j-1}\right)} \frac{\left(x-x_{j+1}\right)}{\left(x_{j}-x_{j+1}\right)} \cdots \frac{\left(x-x_{k}\right)}{\left(x_{j}-x_{k}\right)}$,

About

- https://arnaucube.com
- https://github.com/arnaucube
- https://twitter.com/arnaucube

