

2019-07-05

Shamir's Secret Sharing
https://arnaucube.com

https://github.com/arnaucube

https://twitter.com/arnaucube

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube

Intro
I'm not an expert on the field, neither a mathematician. Just an
engineer with interest for cryptography

Short talk (15 min), with the objective to make a practical
introduction to the Shamir's Secret Sharing algorithm

Is not a talk about mathematical demostrations, is a talk with
the objective to get the basic notions to be able to do a
practical implementation of the algorithm

After the talk, we will do a practical workshop to implement the
concepts. We can offer support for Go, Rust, Python and
Nodejs (you can choose any other language, but we will not be
able to help)

Cryptographic algorithm

Created by Adi Shamir, in 1979
also known by the RSA cryptosystem

explained in few months ago in a similar talk:
https://github.com/arnaucube/slides/rsa

https://github.com/arnaucube/slides/rsa

What's this about?

imagine having a password that you want to share with 5
persons, in a way that they need to join their parts to get the
original password

take the password, split it in 5 parts, and give one part to each
one

when they need to recover it, they just need to get together,
put all the pieces and recover the password (the secret)

this, has the problem that if a person looses its part, the secret
will not be recovered anymore.. luckly we have a solution here:

Shamir's Secret Sharing:
from a secret to be shared, we generate 5 parts, but we
can specify a number of parts that are needed to recover
the secret

so for example, we generate 5 parts, where we will need
only 3 of that 5 parts to recover the secret, and the order
doesn't matter

we have the ability to define the thresholds of M parts to
be created, and N parts to be able the recover

2 points are sufficient to define a line

3 points are sufficient to define a parabola

4 points are sufficient to define a cubic curve

K points are suficient to define a polynomial of degree k − 1

We can create infinity of polynomials of degree 2, that goes through
2 points, but with 3 points, we can define a polynomial of degree 2
unique.

Naming

s : secret

m : number of parts to be created

n : number of minimum parts necessary to recover the secret

p : random prime number, the Finite Field will be over that
value

Secret generation

we want that are necessary n parts of m to recover s
where n < m

need to create a polynomial of degree n− 1
f(x) = α + α x+ α x + α x + ... + +α x

where α is the secret s

α are random values that build the polynomial
*where α is the secret to share, and α are the random
values inside the FiniteF ield

0 1 2
2

3
3

n−1
n−1

0

i

0 i

f(x) = α + α x+ α x + α x + ... + +α x

the packets that we will generate are P = (x, f(x))
where x is each one of the values between 1 and m

P = (1, f(1))

P = (2, f(2))

P = (3, f(3))
...

P = (m, f(m))

0 1 2
2

3
3

n−1
n−1

1

2

3

m

Secret recovery

in order to recover the secret s, we will need a minimum of n
points of the polynomial

the order doesn't matter

with that n parts, we do Lagrange Interpolation/Polynomial
Interpolation

Polynomial Interpolation / Lagrange
Interpolation

for a group of points, we can find the smallest degree
polynomial that goees through all that points

this polynomial is unique for each group of points

L(x) = y l (x)

∑j=0
n

j j

(more details: https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Problem)

Wikipedia example

*example over real numbers, in the practical world, we use the
algorithm in the Finite Field over p

s = 1234

m = 6

n = 3

f(x) = α + α x+ α x

α = s = 1234

α = 166 (random)

α = 94 (random)

f(x) = 1234 + 166x+ 94x

0 1 2
2

0

1

2
2

https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Problem

f(x) = 1234 + 166x+ 94x

we calculate the points P = (x, f(x))
where x is each one of the values between 1 and m

P = (1, f(1)) = (1, 1494)

P = (2, f(2)) = (2, 1942)

P = (3, f(3)) = (3, 2578)

P = (4, f(4)) = (4, 3402)

P = (5, f(5)) = (5, 4414)

P = (6, f(6)) = (6, 5614)

2

1

2

3

4

5

6

to recover the secret, let's imagine that we take the packets 2,
4, 5

(x , y) = (2, 1942)

(x , y) = (4, 3402)

(x , y) = (5, 4414)

0 0

0 0

0 0

let's calculate the Lagrange Interpolation

obtaining f(x) = α + α x+ α x , where α is the secret
s recovered

where we eavluate the polynomial at f(0), obtaining
α = s

*we are not going into details now, but if you want in the
practical workshop we can analyze the 'mathematical' part of
all of this

0 1 2
2

0

0

2019-07-05

And now... practical implementation
full night long

big ints are your friends

L(x) = y l (x)

About
https://arnaucube.com

https://github.com/arnaucube

https://twitter.com/arnaucube

∑j=0
n

j j

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube

