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Warning

I'm not a mathematician, this talk is not for mathematicians

In free time, have been studying zkSNARKS & implementing it in Go

Talk about a technical explaination from an engineer point of view

The idea is to try to transmit the learnings from long night study hours
during last winter

Also at the end will briefly overview how we use zkSNARKs in iden3

This slides will be combined with

parts of the code from https://github.com/arnaucube/go-snark

whiteboard draws and writtings

Don't use your own crypto. But it's fun to implement it (only for
learning purposes)

https://github.com/arnaucube/go-snark
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Introduction

zero knowledge concept

examples

some concept explanations
https://en.wikipedia.org/wiki/Zero-knowledge_proof

https://hackernoon.com/wtf-is-zero-knowledge-proof-
be5b49735f27

https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://hackernoon.com/wtf-is-zero-knowledge-proof-be5b49735f27


zkSNARK overview

protocol to prove the correctness of a computation

useful for
scalability

privacy

interoperability

examples:
Alice can prove to Brenna that knows x such as f(x) = y

Brenna can prove to Alice that knows a certain input
which Hash results in a certain known value

Carol can proof that is a member of an organization
without revealing their identity

etc



zkSNARK flow



Generating and verifying proofs

Generating a proof:

 
 

Verifying a proof:



Foundations

Modular aritmetic

Groups

Finite fields

Elliptic Curve Cryptography



Basics of modular arithmetic

Modulus, mod , %

Remainder after division of two numbers

5 mod 12 = 5 
14 mod 12 = 2 
83 mod 10 = 3 

5 + 3 mod 6 = 8 mod 6 = 2 



Groups

a set with an operation
operation must be associative

neutral element (identity): adding the neutral element to any
element gives the element

inverse: e + e  = identity

cyclic groups
finite group with a generator element

any element must be writable by a multiple of the
generator element

abelian group
group with commutative operation

inverse



Finite fields

algebraic structure like Groups, but with two operations

extended fields concept
(https://en.wikipedia.org/wiki/Field_extension)

https://en.wikipedia.org/wiki/Field_extension


Elliptic curve

point addition

(x , y ) + (x , y ) = ( , )

G1

G2

(whiteboard explanation)

1 1 2 2 1 + dx x y y1 2 1 2

x y + x y1 2 2 1

1 − dx x y y1 2 1 2

y y − x x1 2 1 2



Pairings

3 typical types used for SNARKS:
BN (Barreto Naehrig) - used in Ethereum

BLS (Barreto Lynn Scott) - used in ZCash & Ethereum 2.0

MNT (Miyaji- Nakabayashi - Takano) - used in
CodaProtocol

y = x + b with embedding degree 12

function that maps (pairs) two points from sets S1  and S2
into another set S3

is a bilinear function

e(G ,G ) −> G

the groups must be
cyclic

same prime order (r)

2 3

1 2 T

https://en.wikipedia.org/wiki/Bilinear_map


F , where 
q = 21888242871839275222246405745257275088696311157297

823662689037894645226208583

F , where 
r = 21888242871839275222246405745257275088548364400416

034343698204186575808495617

q

r



Bilinear Pairings

e(P + P ,Q ) == e(P ,Q ) ⋅ e(P ,Q )

e(P ,Q +Q ) == e(P ,Q ) ⋅ e(P ,Q )

e(aP , bQ) == e(P ,Q) == e(bP , aQ)

e(g , g ) == e(g , 6 ⋅ g )

e(g , g ) == e(6 ⋅ g , g )

e(g , g ) == e(3 ⋅ g , 2g )

e(g , g ) == e(2 ⋅ g , 3g )

1 2 1 1 1 2 1

1 1 2 1 1 1 2

ab

1 2
6

1 2

1 2
6

1 2

1 2
6

1 2

1 2
6

1 2



BLS signatures

(small overview, is offtopic here, but is interesting)

key generation
random private key x in [0, r − 1]

public key g

signature
h = Hash(m) (over G2)

signature σ = h

verification
check that: e(g,σ) == e(g ,Hash(m)) 
e(g,h ) == e(g ,h)

x

x

x

x x



aggregate signatures
s = s0 + s1 + s2...

verify aggregated signatures

e(G,S) == e(P ,H(m))

e(G, s0 + s1 + s2...) == e(p0,H(m)) ⋅ e(p1,H(m)) ⋅ e(p2,H(m))...

More info:
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html


Circuit compiler

not a software compiler -> a constraint prover

what this means

constraint concept

value0  == value1  <operation>  value2

want to proof that a certain computation has been done
correctly

graphic of circuit with gates (whiteboard)

about high level programing languages for zkSNARKS, by
Harry Roberts: https://www.youtube.com/watch?
v=nKrBJo3E3FY

https://www.youtube.com/watch?v=nKrBJo3E3FY


Circuit code example: 
f(x) = x + 2 ⋅ x+ 6

func exp5(private a): 
 b = a * a 
 c = a * b 
 d = a * c 
 e = a * d 
 return e 
 
func main(private s0, public s1): 
 s2 = exp5(s0) 
 s3 = s0 * 2 
 s4 = s3 + s2 
 s5 = s4 + 6 
 equals(s1, s5) 
 out = 1 * 1 

5



Inputs and Witness

For a certain circuit, with the inputs that we calculate the Witness
for the circuit signals

private inputs: [8]
in this case the private input is the 'secret' x value that
computed into the equation gives the expected f(x)

public inputs: [32790]
in this case the public input is the result of the equation

signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]

witness: [1 32790 8 64 512 4096 32768 16 32784 32790 1]



R1CS

Rank 1 Constraint System

way to write down the constraints by 3 linear combinations

1 constraint per operation

(A,B,C) = A.s ⋅B.s− C.s = 0
from flat code constraints we can generate the R1CS



R1CS
(a s + a s + ... + a s ) ⋅ (b s + b s + ... + b s ) − (c s + c s + ... + c s ) = 0

(a s + a s + ... + a s ) ⋅ (b s + b s + ... + b s ) − (c s + c s + ... + c s ) = 0
(a s + a s + ... + a s ) ⋅ (b s + b s + ... + b s ) − (c s + c s + ... + c s ) = 0
[...] 
(a s + a s + ... + a s ) ⋅ (b s + b s + ... + b s ) − (c s + c s + ... + c s ) = 0

*where s are the signals of the circuit, and we need to find a, b, c that satisfies the equations

11 1 12 2 1n n 11 1 12 2 1n n 11 1 12 2 1n n

21 1 22 2 2n n 21 1 22 2 2n n 21 1 22 2 2n n

31 1 32 2 3n n 31 1 32 2 3n n 31 1 32 2 3n n

m1 1 m2 2 mn n m1 1 m2 2 mn n m1 1 m2 2 mn n



R1CS constraint example:

signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]

witness: [1 32790 8 64 512 4096 32768 16 32784 32790 1]

First constraint flat code: b0 == s0 * s0

R1CS first constraint: 
A = [00100000000] 
B = [00100000000] 
C = [00010000000]

1

1

1



R1CS example:

A B C:

[00100000000] 
[00100000000] 
[00100000000] 
[00100000000] 
[00100000000] 
[00000011000] 
[60000000100] 
[00000000010] 
[01000000000] 
[10000000000]

[00100000000] 
[00010000000] 
[00001000000] 
[00000100000] 
[20000000000] 
[10000000000] 
[10000000000] 
[10000000000] 
[10000000000] 
[10000000000]

[00010000000]  
[00001000000] 
[00000100000] 
[00000010000] 
[00000001000] 
[00000000100] 
[00000000010] 
[01000000000] 
[00000000010] 
[00000000001]



QAP

Quadratic Arithmetic Programs

3 polynomials, linear combinations of R1CS

very good article about QAP by Vitalik Buterin
https://medium.com/@VitalikButerin/quadratic-arithmetic-
programs-from-zero-to-hero-f6d558cea649

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649




Lagrange Interpolation

(Polynomial Interpolation)

for a group of points, we can find the smallest degree
polynomial that goees through all that points

this polynomial is unique for each group of points



L(x) = y l (x)

 
 

∑j=0
n

j j



Shamir's Secret Sharing

(small overview, is offtopic here, but is interesting)

from a secret to be shared, we generate 5 parts, but we can
specify a number of parts that are needed to recover the
secret

so for example, we generate 5 parts, where we will need only
3 of that 5 parts to recover the secret, and the order doesn't
matter

we have the ability to define the thresholds of M  parts to be
created, and N  parts to be able the recover



Shamir's Secret Sharing - Secret generation

we want that are necessary n parts of m to recover s
where n < m

need to create a polynomial of degree n− 1 
f(x) = α + α x+ α x + α x + ... + +α x

where α  is the secret s

α  are random values that build the polynomial 
*where α  is the secret to share, and α  are the random
values inside the FiniteF ield

0 1 2
2

3
3

n−1
n−1

0

i

0 i



f(x) = α + α x+ α x + α x + ... + +α x

the packets that we will generate are P = (x, f(x))
where x is each one of the values between 1 and m

P = (1, f(1))

P = (2, f(2))

P = (3, f(3))
...

P = (m, f(m))

0 1 2
2

3
3

n−1
n−1

1

2

3

m



Shamir's Secret Sharing - Secret recovery

in order to recover the secret s, we will need a minimum of n
points of the polynomial

the order doesn't matter

with that n parts, we do Lagrange Interpolation/Polynomial
Interpolation, recovering the original polynomial



QAP
(α (x)s + α (x)s + ... + α (x)s ) ⋅ (β (x)s + β (x)s + ... + β (x)s ) − (γ (x)s + γ (x)s + ... + γ (x)s ) = P (x)

|----------------------- A(x) -----------------------|------------------------ B(x) -----------------------|------------------------ C(x) ------------------------|

P (x) = A(x)B(x) − C(x)
P (x) = Z(x)h(x)
Z(x): divisor polynomial

Z(x) = (x− x )(x− x )...(x− x ) => ... => (x , 0), (x , 0), ..., (x , 0)
optimizations with FFT

h(x) = P (x)/Z(x)

1 1 2 2 n n 1 1 2 2 n n 1 1 2 2 n n

1 2 m 1 2 m



The following explanation is for the Pinocchio protocol, all the
examples will be for this protocol. The Groth16 is explained also in
the end of this slides.

https://eprint.iacr.org/2013/279.pdf
https://eprint.iacr.org/2016/260.pdf


Trusted Setup

concept

τ  (Tau)

"Toxic waste"

Proving Key

Verification Key



g t , g t , g t , g t , g t , ... 
g t , g t , g t , g t , g t , ...
1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4



Proving Key: 
pk = (C, pk , pk , pk , pk , pk , pk , pk ) where:

pk = {A (τ)ρ P }

pk = {A (τ)α ρ P }

pk = {B (τ)ρ P }

pk = {B (τ)α ρ P }

pk = {C (τ)ρ P } = {C (τ)ρ ρ P }

pk = {C (τ)α ρ P } = {C (τ)α ρ ρ P }

pk = {β(A (τ)ρ +B (τ)ρ C (τ)ρ ρ )P }

pk = {τ P }

where:

d: degree of polynomial Z(x)

m: number of circuit signals

A A
′

B B
′

C C
′

H

A i A 1 i=0
m+3

A
′

i A A 1 i=n+1
m+3

B i B 2 i=0
m+3

B
′

i B B 1 i=0
m+3

C i C 1 i=0
m+3

i A B 1 i=0
m+3

C
′

i C C 1 i=0
m+3

i C A B 1 i=0
m+3

K i A i B i A B 1 i=0
m+3

H
i
1 i=0

d



Verification Key: 
vk = (vk , vk , vk , vk , vk , vk , vk , vk )

vk = α P , vk = α P , vk = α P

vk = γP , vk = βγP , vk = βγP

vk = Z(τ)ρ ρ P , vk = (A (τ)ρ P )

A B C γ βγ
1

βγ
2

Z IC

A A 2 B B 1 C C 2

βγ 2 βγ
1

1 βγ
2

2

Z A B 2 IC i A 1 i=0
n



type Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH) 
        G1T [][3]*big.Int // t encrypted in G1 curve, G1T == Pk.H
        A   [][3]*big.Int 
        B   [][3][2]*big.Int 
        C   [][3]*big.Int 
        Kp  [][3]*big.Int 
        Ap  [][3]*big.Int 
        Bp  [][3]*big.Int 
        Cp  [][3]*big.Int 
        Z   []*big.Int 
} 
 
type Vk struct { 
        Vka   [3][2]*big.Int 
        Vkb   [3]*big.Int 
        Vkc   [3][2]*big.Int 
        IC    [][3]*big.Int 
        G1Kbg [3]*big.Int    // g1 * Kbeta * Kgamma 
        G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma 
        G2Kg  [3][2]*big.Int // g2 * Kgamma 
        Vkz   [3][2]*big.Int 
} 



// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct { 
        Toxic struct { 
                T      *big.Int // trusted setup secret 
                Ka     *big.Int 
                Kb     *big.Int 
                Kc     *big.Int 
                Kbeta  *big.Int 
                Kgamma *big.Int 
                RhoA   *big.Int 
                RhoB   *big.Int 
                RhoC   *big.Int 
        } 
        Pk Pk 
        Vk Vk 
} 



Proofs generation

A,B,C,Z  (from the QAP)

random δ , δ , δ

H(z) =

A(z) = A (z) + s A (x) + δ Z(z)

B(z) = B (z) + s B (x) + δ Z(z)

C(z) = C (z) + s B (x) + δ Z(z) 
(where m is the number of public inputs)

1 2 3

Z(z)
A(z)B(z) − C(z)

0 ∑i=1
m

i i 1

0 ∑i=1
m

i i 2

0 ∑i=1
m

i i 2



π =< c, pk >

π =< c, pk >

π =< c, pk >
example:

for i := 0; i < circuit.NVars; i++ { 
 proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(pk.B[i], w[i]))
 proof.PiBp = Utils.Bn.G1.Add(proof.PiBp, Utils.Bn.G1.MulScalar(pk.Bp[i], w[i]))
} 

(c = 1 + witness+ δ + δ + δ

π =< c, pk >

π =< c, pk >

π =< c, pk >

π =< c, pk >

π =< h, pk H >

proof: π = (π ,π ,π ,π ,π ,π ,π ,π

A A

A
′

A
′

B B

1 2 3

B
′

B
′

C C

C
′

C
′

K K

H K

A A
′

B B
′

C C
′

K H



Proofs verification

vk = vk + x vk

Verification:

e(π , vk ) == e(π , g )

e(vk ,π ) == e(π , g )

e(π , vk ) == e(π , g )

e(vk + π ,π ) == e(π , vk ) ⋅ e(π , g )

e(vk + π + π ,V ) ⋅ e(vk ,π ) == e(π , vk )

kx IC,0 ∑i=1
n

i IC,i

A a A′ 2

b B B′ 2

C c C ′ 2

kx A B H kz C 2

kx A C βγ
2

βγ
1

B k γ
1



Example (whiteboard):  
 

= e(g h(t), g z(t)) 

 
 

= e(g h(t), g z(t)) 

 
 

= e(g h(t), g z(t))

 
 
e(g α (t)s + g α (t)s + ... + g α (t)s , g β (t)s + g β (t)s + ... + g β (t)s ) 
= e(g h(t), g z(t)) ⋅ e(g γ (t)s + g γ (t)s + ... + g γ (t)s , g )

e(π , g )C 2

e(π ,π )A B
1 2

e(C + C + ... + C , g )1 2 n 2

e(A +A + ... +A ,B +B + ... +B )1 2 n 1 2 n
1 2

e(g γ (t)s + g γ (t)s + ... + g γ (t)s , g )1 1 1 1 2 2 1 n n 2

e(g α (t)s + g α (t)s + ... + g α (t)s , g β (t)s + g β (t)s + ... + g β (t)s )1 1 1 1 2 2 1 n n 2 1 1 2 2 2 2 n n
1 2

1 1 1 1 2 2 1 n n 2 1 1 2 2 2 2 n n

1 2 1 1 1 1 2 2 1 n n 2



Groth16

Trusted Setup

τ = α,β, γ, δ,x

σ =

α,β, δ, {x }

{ }

{ }

{ }

σ = (β, γ, δ, {x } )

(where u (x), v (x),w (x) are the QAP )

1

i
i=0
n−1

γ

βu (x) + αv (x) + w (x)i i i
i=0
l

δ

βu (x) + αv (x) + w (x)i i i
i=l+1
m

δ

x t(x)i

i=0
n−2

2
i

i=0
n−1

i i i



type Pk struct { // Proving Key 
 BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
 Z        []*big.Int 
 G1       struct { 
  Alpha    [3]*big.Int 
  Beta     [3]*big.Int 
  Delta    [3]*big.Int 
  At       [][3]*big.Int // {a(τ)} from 0 to m
  BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m
 } 
 G2 struct { 
  Beta     [3][2]*big.Int 
  Gamma    [3][2]*big.Int 
  Delta    [3][2]*big.Int 
  BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m
 } 
 PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
} 



type Vk struct { 
 IC [][3]*big.Int 
 G1 struct { 
  Alpha [3]*big.Int 
 } 
 G2 struct { 
  Beta  [3][2]*big.Int 
  Gamma [3][2]*big.Int 
  Delta [3][2]*big.Int 
 } 
} 



// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct { 
 Toxic struct { 
  T      *big.Int // trusted setup secret 
  Kalpha *big.Int 
  Kbeta  *big.Int 
  Kgamma *big.Int 
  Kdelta *big.Int 
 } 
 Pk Pk 
 Vk Vk 
} 



Proofs Generation

π = α+ α u (x) + rδ 
π = β + α v (x) + sδ

π = + π s+ π r − rsδ

π = π ,π ,π

A ∑i=0
m

i i

B ∑i=0
m

i i

C
δ

a (βu (x) + αv (x) + w (x)) + h(x)t(x)∑i=l+1
m

i i i i
A B

A
1

B
1

C
2



Proof Verification

[π ] ⋅ [π ] = [α] ⋅ [β] + a [ ] ⋅ [γ] + [π ] ⋅ [δ]

e(π ,π ) = e(α,β) ⋅ e(pub, γ) ⋅ e(π , δ)

A 1 B 2 1 2 ∑i=0
l

i
γ

βu (x) + αv (x) + w (x)i i i
1 2 C 1 2

A B C



How we use zkSNARKs in iden3

proving a credentials without revealing it's content

proving that an identity has a claim issued by another identity,
without revealing all the data

proving any property of an identity

ITF  (Identity Transition Function), a way to prove with a
zkSNARK that an identity has been updated following the
defined protocol

identities can not cheat when issuing claims

etc

Other ideas for free time side project

Zendermint (Tendermint + zkSNARKs)



zkSNARK libraries

bellman (rust)

libsnark (c++)

snarkjs (javascript)

websnark (wasm)

go-snark (golang) [do not use in production]

Circuit languages

language snark library with which plugs in

Zokrates libsnark, bellman

Snarky libsnark

circom snarkjs, websnark, bellman

go-snark-circuit go-snark

https://github.com/zkcrypto/bellman
https://github.com/scipr-lab/libsnark
https://github.com/iden3/snarkjs
https://github.com/iden3/websnark
https://github.com/arnaucube/go-snark
https://github.com/Zokrates/ZoKrates
https://github.com/o1-labs/snarky
https://github.com/iden3/circom
https://github.com/arnaucube/go-snark


Utilities (Elliptic curve & Hash functions) inside
the zkSNARK

we work over F , where 
r = 21888242871839275222246405745257275088548364400416

034343698204186575808495617

BabyJubJub

Mimc

Poseidon

r



Utilities (Elliptic curve & Hash functions) inside the zkSNARK

BabyJubJub

explaination: https://medium.com/zokrates/efficient-ecc-in-
zksnarks-using-zokrates-bd9ae37b8186

implementations:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

rust: https://github.com/arnaucube/babyjubjub-rs

c++: https://github.com/barryWhiteHat/baby_jubjub_ecc

https://medium.com/zokrates/efficient-ecc-in-zksnarks-using-zokrates-bd9ae37b8186
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib
https://github.com/arnaucube/babyjubjub-rs
https://github.com/barryWhiteHat/baby_jubjub_ecc


Utilities (Elliptic curve & Hash functions) inside the zkSNARK

Mimc7

explaination: https://eprint.iacr.org/2016/492.pdf

implementations in:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

rust: https://github.com/arnaucube/mimc-rs

https://eprint.iacr.org/2016/492.pdf
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib
https://github.com/arnaucube/mimc-rs


Utilities (Elliptic curve & Hash functions) inside the zkSNARK

Poseidon

explaination: https://eprint.iacr.org/2019/458.pdf

implementations in:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

https://eprint.iacr.org/2019/458.pdf
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib
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