zkSNARKs from scratch, a technical explanation

iden3.io
github.com/iden3
twitter.com/identhree
arnaucube.com github.com/arnaucube twitter.com/arnaucube

Warning

- I'm not a mathematician, this talk is not for mathematicians
- In free time, have been studying zkSNARKS \& implementing it in Go
- Talk about a technical explaination from an engineer point of view
- The idea is to try to transmit the learnings from long night study hours during last winter
- Also at the end will briefly overview how we use zkSNARKs in iden3
- This slides will be combined with
- parts of the code from https://github.com/arnaucube/go-snark
- whiteboard draws and writtings
- Don't use your own crypto. But it's fun to implement it (only for learning purposes)

Contents

- Introduction
- zkSNARK overview
- zkSNARK flow
- Generating and verifying proofs
- Foundations
- Basics of modular arithmetic
- Groups
- Finite fields
- Elliptic curve operations
- Pairings
- Bilinear Pairings
- BLS signatures
- zkSNARK (Pinocchio)
- Circuit compiler
- R1CS
- QAP
- Lagrange Interpolation
- Trusted Setup
- Proofs generation
- Proofs verification
- Groth16
- How we use zkSNARKs in iden3
- libraries
- Circuit languages
- utilities (Elliptic curve \& Hash functions) inside the zkSNARK libraries
- BabyJubJub
- Mimc
- Poseidon
- References

Introduction

- zero knowledge concept
- examples
- some concept explanations
- https://en.wikipedia.org/wiki/Zero-knowledge_proof
- https://hackernoon.com/wtf-is-zero-knowledge-proofbe5b49735f27

zkSNARK overview

- protocol to prove the correctness of a computation
- useful for
- scalability
- privacy
- interoperability
- examples:
- Alice can prove to Brenna that knows x such as $f(x)=y$
- Brenna can prove to Alice that knows a certain input which Hash results in a certain known value
- Carol can proof that is a member of an organization without revealing their identity
- etc

zkSNARK flow

Generating and verifying proofs

Generating a proof:

Verifying a proof:

Foundations

- Modular aritmetic
- Groups
- Finite fields
- Elliptic Curve Cryptography

Basics of modular arithmetic

- Modulus, mod, \%
- Remainder after division of two numbers


```
5 mod 12 = 5
14 mod 12 = 2
83 mod 10 = 3
```

```
5 + 3 mod 6 = 8 mod 6 = 2
```


Groups

- a set with an operation
- operation must be associative
- neutral element (identity): adding the neutral element to any element gives the element
- inverse: $e+e_{\text {inverse }}=i d e n t i t y$
- cyclic groups
- finite group with a generator element
- any element must be writable by a multiple of the generator element
- abelian group
- group with commutative operation

Finite fields

- algebraic structure like Groups, but with two operations
- extended fields concept (https://en.wikipedia.org/wiki/Field_extension)

Elliptic curve

- point addition

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- G1
- G2
(whiteboard explanation)

Pairings

- 3 typical types used for SNARKS:
- BN (Barreto Naehrig) - used in Ethereum
- BLS (Barreto Lynn Scott) - used in ZCash \& Ethereum 2.0
- MNT (Miyaji- Nakabayashi - Takano) - used in CodaProtocol
- $y^{2}=x^{3}+b$ with embedding degree 12
- function that maps (pairs) two points from sets s1 and s2 into another set s3
- is a bilinear function
- $e\left(G_{1}, G_{2}\right)->G_{T}$
- the groups must be
- cyclic
- same prime order (r)
- F_{q}, where
$q=21888242871839275222246405745257275088696311157297$ 823662689037894645226208583
- F_{r}, where
$r=21888242871839275222246405745257275088548364400416$
034343698204186575808495617

Bilinear Pairings

$$
\begin{aligned}
& e\left(P_{1}+P_{2}, Q_{1}\right)==e\left(P_{1}, Q_{1}\right) \cdot e\left(P_{2}, Q_{1}\right) \\
& e\left(P_{1}, Q_{1}+Q_{2}\right)==e\left(P_{1}, Q_{1}\right) \cdot e\left(P_{1}, Q_{2}\right) \\
& e(a P, b Q)==e(P, Q)^{a b}==e(b P, a Q) \\
& e\left(g_{1}, g_{2}\right)^{6}==e\left(g_{1}, 6 \cdot g_{2}\right) \\
& e\left(g_{1}, g_{2}\right)^{6}==e\left(6 \cdot g_{1}, g_{2}\right) \\
& e\left(g_{1}, g_{2}\right)^{6}==e\left(3 \cdot g_{1}, 2 g_{2}\right) \\
& e\left(g_{1}, g_{2}\right)^{6}==e\left(2 \cdot g_{1}, 3 g_{2}\right)
\end{aligned}
$$

BLS signatures

(small overview, is offtopic here, but is interesting)

- key generation
- random private key x in $[0, r-1]$
- public key g^{x}
- signature
- $h=\operatorname{Hash}(m)$ (over G2)
- signature $\sigma=h^{x}$
- verification
- check that: $e(g, \sigma)==e\left(g^{x}, \operatorname{Hash}(m)\right)$

$$
e\left(g, h^{x}\right)=e\left(g^{x}, h\right)
$$

- aggregate signatures

$$
\circ s=s 0+s 1+s 2 \ldots
$$

- verify aggregated signatures
$e(G, S)=e e(P, H(m))$
$e(G, s 0+s 1+s 2 \ldots)==e(p 0, H(m)) \cdot e(p 1, H(m)) \cdot e(p 2, H(m)) \ldots$
More info:
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

Circuit compiler

- not a software compiler -> a constraint prover
- what this means
- constraint concept

```
- value0 == value1 <operation> value2
```

- want to proof that a certain computation has been done correctly
- graphic of circuit with gates (whiteboard)
- about high level programing languages for zkSNARKS, by Harry Roberts: https://www.youtube.com/watch? $\mathrm{v}=\mathrm{nKrBJo3E} 3 F Y$

Circuit code example:

$$
f(x)=x^{5}+2 \cdot x+6
$$

func exp5(private a):

$$
\begin{aligned}
& \mathbf{b}=a^{*} \mathrm{a} \\
& \mathrm{c}=\mathrm{a}^{*} \mathrm{~b} \\
& \mathrm{~d}=\mathrm{a}^{*} \mathrm{c} \\
& \mathrm{e}=\mathrm{a} * \mathrm{~d} \\
& \text { return } \mathrm{e}
\end{aligned}
$$

func main(private s0, public s1):

$$
\begin{aligned}
& s 2=\exp 5(s 0) \\
& s 3=s 0 * 2 \\
& s 4=s 3+s 2 \\
& s 5=s 4+6 \\
& \text { equals }(s 1, s 5) \\
& \text { out }=1 * 1
\end{aligned}
$$

Inputs and Witness

For a certain circuit, with the inputs that we calculate the Witness for the circuit signals

- private inputs: [8]
- in this case the private input is the 'secret' x value that computed into the equation gives the expected $f(x)$
- public inputs: [32790]
- in this case the public input is the result of the equation
- signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]
- witness: [1 32790864512409632768163278432790 1]

R1CS

- Rank 1 Constraint System
- way to write down the constraints by 3 linear combinations
- 1 constraint per operation
- $(A, B, C)=A . s \cdot B . s-C . s=0$
- from flat code constraints we can generate the R1CS

R1CS

$$
\begin{aligned}
& \left(a_{11} s_{1}+a_{12} s_{2}+\ldots+a_{1 n} s_{n}\right) \cdot\left(b_{11} s_{1}+b_{12} s_{2}+\ldots+b_{1 n} s_{n}\right)-\left(c_{11} s_{1}+c_{12} s_{2}+\ldots+c_{1 n} s_{n}\right)=0 \\
& \left(a_{21} s_{1}+a_{22} s_{2}+\ldots+a_{2 n} s_{n}\right) \cdot\left(b_{21} s_{1}+b_{22} s_{2}+\ldots+b_{2 n} s_{n}\right)-\left(c_{21} s_{1}+c_{22} s_{2}+\ldots+c_{2 n} s_{n}\right)=0 \\
& \left(a_{31} s_{1}+a_{32} s_{2}+\ldots+a_{3 n} s_{n}\right) \cdot\left(b_{31} s_{1}+b_{32} s_{2}+\ldots+b_{3 n} s_{n}\right)-\left(c_{31} s_{1}+c_{32} s_{2}+\ldots+c_{3 n} s_{n}\right)=0 \\
& {[\ldots]} \\
& \left(a_{m 1} s_{1}+a_{m 2} s_{2}+\ldots+a_{m n} s_{n}\right) \cdot\left(b_{m 1} s_{1}+b_{m 2} s_{2}+\ldots+b_{m n} s_{n}\right)-\left(c_{m 1} s_{1}+c_{m 2} s_{2}+\ldots+c_{m n} s_{n}\right)=0
\end{aligned}
$$

*where s are the signals of the circuit, and we need to find a, b, c that satisfies the equations

R1CS constraint example:

- signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]
- witness: [1 32790864512409632768163278432790 1]
- First constraint flat code: b0 == s0 * s0
- R1CS first constraint:
$A_{1}=[00100000000]$
$B_{1}=[00100000000]$
$C_{1}=[00010000000]$

R1CS example:

A	B	$C:$
$[00100000000]$	$[00100000000]$	$[00010000000]$
$[00100000000]$	$[00010000000]$	$[00001000000]$
$[00100000000]$	$[00001000000]$	$[00000100000]$
$[00100000000]$	$[00000100000]$	$[00000010000]$
$[00100000000]$	$[20000000000]$	$[00000001000]$
$[00000011000]$	$[10000000000]$	$[00000000100]$
$[60000000100]$	$[10000000000]$	$[00000000010]$
$[00000000010]$	$[10000000000]$	$[01000000000]$
$[01000000000]$	$[10000000000]$	$[00000000010]$
$[10000000000]$	$[10000000000]$	$[00000000001]$

QAP

- Quadratic Arithmetic Programs
- 3 polynomials, linear combinations of R1CS
- very good article about QAP by Vitalik Buterin https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

Lagrange Interpolation

(Polynomial Interpolation)

- for a group of points, we can find the smallest degree polynomial that goees through all that points
- this polynomial is unique for each group of points

$$
L(x)=\sum_{j=0}^{n} y_{j} l_{j}(x)
$$

$$
\ell_{j}(x):=\prod_{\substack{0 \leq m \leq k \\ m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}}=\frac{\left(x-x_{0}\right)}{\left(x_{j}-x_{0}\right)} \cdots \frac{\left(x-x_{j-1}\right)}{\left(x_{j}-x_{j-1}\right)} \frac{\left(x-x_{j+1}\right)}{\left(x_{j}-x_{j+1}\right)} \cdots \frac{\left(x-x_{k}\right)}{\left(x_{j}-x_{k}\right)}
$$

Shamir's Secret Sharing

(small overview, is offtopic here, but is interesting)

- from a secret to be shared, we generate 5 parts, but we can specify a number of parts that are needed to recover the secret
- so for example, we generate 5 parts, where we will need only 3 of that 5 parts to recover the secret, and the order doesn't matter
- we have the ability to define the thresholds of M parts to be created, and N parts to be able the recover

Shamir's Secret Sharing - Secret generation

- we want that are necessary n parts of m to recover s
- where $n<m$
- need to create a polynomial of degree $n-1$ $f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\ldots++\alpha_{n-1} x^{n-1}$
- where α_{0} is the secret s
- α_{i} are random values that build the polynomial *where α_{0} is the secret to share, and α_{i} are the random values inside the FiniteField

$$
f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\ldots++\alpha_{n-1} x^{n-1}
$$

- the packets that we will generate are $P=(x, f(x))$
- where x is each one of the values between 1 and m

> - $P_{1}=(1, f(1))$
> - $P_{2}=(2, f(2))$
> $P_{3}=(3, f(3))$

- $P_{m}=(m, f(m))$

Shamir's Secret Sharing - Secret recovery

- in order to recover the secret s, we will need a minimum of n points of the polynomial
- the order doesn't matter
- with that n parts, we do Lagrange Interpolation/Polynomial Interpolation, recovering the original polynomial

QAP

$\left(\alpha_{1}(x) s_{1}+\alpha_{2}(x) s_{2}+\ldots+\alpha_{n}(x) s_{n}\right) \cdot\left(\beta_{1}(x) s_{1}+\beta_{2}(x) s_{2}+\ldots+\beta_{n}(x) s_{n}\right)-\left(\gamma_{1}(x) s_{1}+\gamma_{2}(x) s_{2}+\ldots+\gamma_{n}(x) s_{n}\right)=P(x)$
|--- $B(x)$

- $P(x)=A(x) B(x)-C(x)$
- $P(x)=Z(x) h(x)$
- $Z(x)$: divisor polynomial
- $Z(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{m}\right)=>\ldots=>\left(x_{1}, 0\right),\left(x_{2}, 0\right), \ldots,\left(x_{m}, 0\right)$
- optimizations with FFT
- $h(x)=P(x) / Z(x)$

The following explanation is for the Pinocchio protocol, all the examples will be for this protocol. The Groth16 is explained also in the end of this slides.

Trusted Setup

- concept
- τ (Tau)
- "Toxic waste"
- Proving Key
- Verification Key
$g_{1} t^{0}, g_{1} t^{1}, g_{1} t^{2}, g_{1} t^{3}, g_{1} t^{4}, \ldots$
$g_{2} t^{0}, g_{2} t^{1}, g_{2} t^{2}, g_{2} t^{3}, g_{2} t^{4}, \ldots$

Proving Key:
$p k=\left(C, p k_{A}, p k_{A}^{\prime}, p k_{B}, p k_{B}^{\prime}, p k_{C}, p k_{C}^{\prime}, p k_{H}\right)$ where:

- $p k_{A}=\left\{A_{i}(\tau) \rho_{A} P_{1}\right\}_{i=0}^{m+3}$
- $p k_{A}^{\prime}=\left\{A_{i}(\tau) \alpha_{A} \rho_{A} P_{1}\right\}_{i=n+1}^{m+3}$
- $p k_{B}=\left\{B_{i}(\tau) \rho_{B} P_{2}\right\}_{i=0}^{m+3}$
- $p k_{B}^{\prime}=\left\{B_{i}(\tau) \alpha_{B} \rho_{B} P_{1}\right\}_{i=0}^{m+3}$
- $p k_{C}=\left\{C_{i}(\tau) \rho_{C} P_{1}\right\}_{i=0}^{m+3}=\left\{C_{i}(\tau) \rho_{A} \rho_{B} P_{1}\right\}_{i=0}^{m+3}$
- $p k_{C}^{\prime}=\left\{C_{i}(\tau) \alpha_{C} \rho_{C} P_{1}\right\}_{i=0}^{m+3}=\left\{C_{i}(\tau) \alpha_{C} \rho_{A} \rho_{B} P_{1}\right\}_{i=0}^{m+3}$
- $p k_{K}=\left\{\beta\left(A_{i}(\tau) \rho_{A}+B_{i}(\tau) \rho_{B} C_{i}(\tau) \rho_{A} \rho_{B}\right) P_{1}\right\}_{i=0}^{m+3}$
- $p k_{H}=\left\{\tau^{i} P_{1}\right\}_{i=0}^{d}$
where:
- d : degree of polynomial $Z(x)$
- m : number of circuit signals

Verification Key:
$v k=\left(v k_{A}, v k_{B}, v k_{C}, v k_{\gamma}, v k_{\beta \gamma}^{1}, v k_{\beta \gamma}^{2}, v k_{Z}, v k_{I C}\right)$

- $v k_{A}=\alpha_{A} P_{2}, v k_{B}=\alpha_{B} P_{1}, v k_{C}=\alpha_{C} P_{2}$
- $v k_{\beta \gamma}=\gamma P_{2}, v k_{\beta \gamma}^{1}=\beta \gamma P_{1}, v k_{\beta \gamma}^{2}=\beta \gamma P_{2}$
- $v k_{Z}=Z(\tau) \rho_{A} \rho_{B} P_{2}, v k_{I C}=\left(A_{i}(\tau) \rho_{A} P_{1}\right)_{i=0}^{n}$

```
type Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH)
    G1T [][3]*big.Int // t encrypted in G1 curve, G1T
    A [][3]*big.Int
    B [][3][2]*big.Int
    C [][3]*big.Int
    Kp [][3]*big.Int
    Ap [][3]*big.Int
    Bp [][3]*big.Int
    Cp [][3]*big.Int
    Z []*big.Int
}
```

type Vk struct \{
Vka [3][2]*big.Int
Vkb [3]*big.Int
Vkc [3][2]*big.Int
IC [][3]*big.Int
G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma
G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma
G2Kg [3][2]*big.Int // g2 * Kgamma
Vkz [3][2]*big.Int
\}

```
// Setup is the data structure holding the Trusted Setup
type Setup struct {
    Toxic struct {
        T *big.Int // trusted setup secret
        Ka *big.Int
        Kb *big.Int
        Kc *big.Int
        Kbeta *big.Int
        Kgamma *big.Int
        RhoA *big.Int
        RhoB *big.Int
        RhoC *big.Int
    }
    Pk Pk
    Vk Vk
}
```


Proofs generation

- A, B, C, Z (from the QAP)
- random $\delta_{1}, \delta_{2}, \delta_{3}$
- $H(z)=\frac{A(z) B(z)-C(z)}{Z(z)}$
- $A(z)=A_{0}(z)+\sum_{i=1}^{m} s_{i} A_{i}(x)+\delta_{1} Z(z)$
- $B(z)=B_{0}(z)+\sum_{i=1}^{m} s_{i} B_{i}(x)+\delta_{2} Z(z)$
- $C(z)=C_{0}(z)+\sum_{i=1}^{m} s_{i} B_{i}(x)+\delta_{2} Z(z)$ (where m is the number of public inputs)
- $\pi_{A}=<c, p k_{A}>$
- $\pi_{A}^{\prime}=<c, p k_{A}^{\prime}>$
- $\pi_{B}=<c, p k_{B}>$
- example:

```
for i := 0; i < circuit.NVars; i++ {
    proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.E
    proof.PiBp = Utils.Bn.G1.Add(proof.PiBp, Utils
}
```

($c=1+$ witness $+\delta_{1}+\delta_{2}+\delta_{3}$

- $\pi_{B}^{\prime}=<c, p k_{B}^{\prime}>$
- $\pi_{C}=<c, p k_{C}>$
- $\pi_{C}^{\prime}=<c, p k_{C}^{\prime}>$
- $\pi_{K}=<c, p k_{K}>$
- $\pi_{H}=<h, p k_{K} H>$
- proof: $\pi=\left(\pi_{A}, \pi_{A}^{\prime}, \pi_{B}, \pi_{B}^{\prime}, \pi_{C}, \pi_{C}^{\prime}, \pi_{K}, \pi_{H}\right.$

Proofs verification

- $v k_{k x}=v k_{I C, 0}+\sum_{i=1}^{n} x_{i} v k_{I C, i}$

Verification:

- $e\left(\pi_{A}, v k_{a}\right)==e\left(\pi_{A^{\prime}}, g_{2}\right)$
- $e\left(v k_{b}, \pi_{B}\right)==e\left(\pi_{B^{\prime}}, g_{2}\right)$

- $e\left(\pi_{C}, v k_{c}\right)==e\left(\pi_{C^{\prime}}, g_{2}\right)$
- $e\left(v k_{k x}+\pi_{A}, \pi_{B}\right)==e\left(\pi_{H}, v k_{k z}\right) \cdot e\left(\pi_{C}, g_{2}\right)$
- $e\left(v k_{k x}+\pi_{A}+\pi_{C}, V_{\beta \gamma}^{2}\right) \cdot e\left(v k_{\beta \gamma}^{1}, \pi_{B}\right)==e\left(\pi_{k}, v k_{\gamma}^{1}\right)$

Example (whiteboard):

$$
\begin{aligned}
& \frac{e\left(\pi_{A}, \pi_{B}\right)}{e\left(\pi_{C}, g_{2}\right)}=e\left(g_{1} h(t), g_{2} z(t)\right) \\
& \frac{e\left(A_{1}+A_{2}+\ldots+A_{n}, B_{1}+B_{2}+\ldots+B_{n}\right)}{e\left(C_{1}+C_{2}+\ldots+C_{n}, g_{2}\right)}=e\left(g_{1} h(t), g_{2} z(t)\right) \\
& \frac{e\left(g_{1} \alpha_{1}(t) s_{1}+g_{1} \alpha_{2}(t) s_{2}+\ldots+g_{1} \alpha_{n}(t) s_{n}, g_{2} \beta_{1}(t) s_{1}+g_{2} \beta_{2}(t) s_{2}+\ldots+g_{2} \beta_{n}(t) s_{n}\right)}{e\left(g_{1} \gamma_{1}(t) s_{1}+g_{1} \gamma_{2}(t) s_{2}+\ldots+g_{1} \gamma_{n}(t) s_{n}, g_{2}\right)}=e\left(g_{1} h(t), g_{2} z(t)\right) \\
& e\left(g_{1} \alpha_{1}(t) s_{1}+g_{1} \alpha_{2}(t) s_{2}+\ldots+g_{1} \alpha_{n}(t) s_{n}, g_{2} \beta_{1}(t) s_{1}+g_{2} \beta_{2}(t) s_{2}+\ldots+g_{2} \beta_{n}(t) s_{n}\right) \\
& =e\left(g_{1} h(t), g_{2} z(t)\right) \cdot e\left(g_{1} \gamma_{1}(t) s_{1}+g_{1} \gamma_{2}(t) s_{2}+\ldots+g_{1} \gamma_{n}(t) s_{n}, g_{2}\right)
\end{aligned}
$$

Groth16

Trusted Setup

$\tau=\alpha, \beta, \gamma, \delta, x$
$\sigma_{1}=$

- $\alpha, \beta, \delta,\left\{x^{i}\right\}_{i=0}^{n-1}$

- $\left\{\frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\gamma}\right\}_{i=0}^{l}$
- $\left\{\frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\delta}\right\}_{i=l+1}^{m}$
- $\left\{\frac{x^{i} t(x)}{\delta}\right\}_{i=0}^{n-2}$
$\sigma_{2}=\left(\beta, \gamma, \delta,\left\{x^{i}\right\}_{i=0}^{n-1}\right)$
(where $u_{i}(x), v_{i}(x), w_{i}(x)$ are the $\left.Q A P\right)$

```
type Pk struct { // Proving Key
    BACDelta [][3]*big.Int // {( \betaui(x)+\alphavi(x)+wi(x)
    Z []*big.Int
    G1
    struct {
    Alpha [3]*big.Int
    Beta [3]*big.Int
    Delta [3]*big.Int
    At [][3]*big.Int // {a(\tau)} from 0 tc
    BACGamma [][3]*big.Int // {( \betaui(x)+\alphavi(x
    }
    G2 struct {
        Beta [3][2]*big.Int
        Gamma [3][2]*big.Int
        Delta [3][2]*big.Int
        BACGamma [][3][2]*big.Int // {( \betaui(x)+\alphav:
    }
    PowersTauDelta [][3]*big.Int // powers of \tau encryp
}
```

```
type Vk struct {
    IC [][3]*big.Int
    G1 struct {
                                    Alpha [3]*big.Int
    }
    G2 struct {
        Beta [3][2]*big.Int
        Gamma [3][2]*big.Int
        Delta [3][2]*big.Int
    }
}
```

```
// Setup is the data structure holding the Trusted Setup
type Setup struct {
Toxic struct {
    T *big.Int // trusted setup secret
    Kalpha *big.Int
                        Kbeta *big.Int
                        Kgamma *big.Int
                        Kdelta *big.Int
}
    Pk Pk
    Vk Vk
}
```


Proofs Generation

$$
\begin{aligned}
& \pi_{A}=\alpha+\sum_{i=0}^{m} \alpha_{i} u_{i}(x)+r \delta \\
& \pi_{B}=\beta+\sum_{i=0}^{m} \alpha_{i} v_{i}(x)+s \delta \\
& \pi_{C}=\frac{\sum_{i=l+1}^{m} a_{i}\left(\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)\right)+h(x) t(x)}{\delta}+\pi_{A} s+\pi_{B} r-r s \delta \\
& \pi=\pi_{A}^{1}, \pi_{B}^{1}, \pi_{C}^{2}
\end{aligned}
$$

Proof Verification

$$
\begin{aligned}
& {\left[\pi_{A}\right]_{1} \cdot\left[\pi_{B}\right]_{2}=[\alpha]_{1} \cdot[\beta]_{2}+\sum_{i=0}^{l} a_{i}\left(\frac{\beta u_{i}(x)+\alpha v_{i}(x)+w_{i}(x)}{\gamma}\right]_{1} \cdot[\gamma]_{2}+\left[\pi_{C}\right]_{1} \cdot[\delta]_{2}} \\
& e\left(\pi_{A}, \pi_{B}\right)=e(\alpha, \beta) \cdot e(p u b, \gamma) \cdot e\left(\pi_{C}, \delta\right)
\end{aligned}
$$

How we use zkSNARKs in iden3

- proving a credentials without revealing it's content
- proving that an identity has a claim issued by another identity, without revealing all the data
- proving any property of an identity
- ITF (Identity Transition Function), a way to prove with a zkSNARK that an identity has been updated following the defined protocol
- identities can not cheat when issuing claims
- etc

Other ideas for free time side project

- Zendermint (Tendermint + zkSNARKs)

zkSNARK libraries

- bellman (rust)
- libsnark (c++)
- snarkjs (javascript)
- websnark (wasm)
- go-snark (golang) [do not use in production]

Circuit languages

language
Zokrates
Snarky
circom
go-snark-circuit
snark library with which plugs in
libsnark, bellman
libsnark
snarkjs, websnark, bellman
go-snark

Utilities (Elliptic curve \& Hash functions) inside the zkSNARK

- we work over F_{r}, where
$r=21888242871839275222246405745257275088548364400416$
034343698204186575808495617
- BabyJubJub
- Mimc
- Poseidon

Utilities (Elliptic curve \& Hash functions) inside the zkSNARK

BabyJubJub

- explaination: https://medium.com/zokrates/efficient-ecc-in-zksnarks-using-zokrates-bd9ae37b8186
- implementations:
- go: https://github.com/iden3/go-iden3-crypto
- javascript \& circom: https://github.com/iden3/circomlib
- rust: https://github.com/arnaucube/babyjubjub-rs
- c++: https://github.com/barryWhiteHat/baby_jubjub_ecc

Utilities (Elliptic curve \& Hash functions) inside the zkSNARK

Mimc7

- explaination: https://eprint.iacr.org/2016/492.pdf
- implementations in:
- go: https://github.com/iden3/go-iden3-crypto
- javascript \& circom: https://github.com/iden3/circomlib
- rust: https://github.com/arnaucube/mimc-rs

Utilities (Elliptic curve \& Hash functions) inside the zkSNARK

Poseidon

- explaination: https://eprint.iacr.org/2019/458.pdf
- implementations in:
- go: https://github.com/iden3/go-iden3-crypto
- javascript \& circom: https://github.com/iden3/circomlib

References

- Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
- Pinocchio: Nearly practical verifiable computation, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
- On the Size of Pairing-based Non-interactive Arguments, Jens Groth https://eprint.iacr.org/2016/260.pdf
- (also all the links through the slides)

Thank you very much

iden

arnaucube.com github.com/arnaucube twitter.com/arnaucube

