

arnaucube.com

github.com/arnaucube
twitter.com/arnaucube

2019-08-20

zkSNARKs from scratch, a technical
explanation

iden3.io
github.com/iden3
twitter.com/identhree

https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://iden3.io/
https://github.com/iden3
https://twitter.com/identhree

Warning

I'm not a mathematician, this talk is not for mathematicians

In free time, have been studying zkSNARKS & implementing it in Go

Talk about a technical explaination from an engineer point of view

The idea is to try to transmit the learnings from long night study hours
during last winter

Also at the end will briefly overview how we use zkSNARKs in iden3

This slides will be combined with

parts of the code from https://github.com/arnaucube/go-snark

whiteboard draws and writtings

Don't use your own crypto. But it's fun to implement it (only for
learning purposes)

https://github.com/arnaucube/go-snark

Contents

Introduction
zkSNARK overview

zkSNARK flow

Generating and verifying proofs

Foundations
Basics of modular arithmetic

Groups

Finite fields

Elliptic curve operations

Pairings
Bilinear Pairings

BLS signatures

zkSNARK (Pinocchio)
Circuit compiler

R1CS

QAP

Lagrange Interpolation

Trusted Setup

Proofs generation

Proofs verification

Groth16

How we use zkSNARKs in iden3

libraries

Circuit languages

utilities (Elliptic curve & Hash functions) inside the zkSNARK libraries
BabyJubJub

Mimc

Poseidon

References

Introduction

zero knowledge concept

examples

some concept explanations
https://en.wikipedia.org/wiki/Zero-knowledge_proof

https://hackernoon.com/wtf-is-zero-knowledge-proof-
be5b49735f27

https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://hackernoon.com/wtf-is-zero-knowledge-proof-be5b49735f27

zkSNARK overview

protocol to prove the correctness of a computation

useful for
scalability

privacy

interoperability

examples:
Alice can prove to Brenna that knows x such as f(x) = y

Brenna can prove to Alice that knows a certain input
which Hash results in a certain known value

Carol can proof that is a member of an organization
without revealing their identity

etc

zkSNARK flow

Generating and verifying proofs

Generating a proof:

Verifying a proof:

Foundations

Modular aritmetic

Groups

Finite fields

Elliptic Curve Cryptography

Basics of modular arithmetic

Modulus, mod , %

Remainder after division of two numbers

5 mod 12 = 5
14 mod 12 = 2
83 mod 10 = 3

5 + 3 mod 6 = 8 mod 6 = 2

Groups

a set with an operation
operation must be associative

neutral element (identity): adding the neutral element to any
element gives the element

inverse: e + e = identity

cyclic groups
finite group with a generator element

any element must be writable by a multiple of the
generator element

abelian group
group with commutative operation

inverse

Finite fields

algebraic structure like Groups, but with two operations

extended fields concept
(https://en.wikipedia.org/wiki/Field_extension)

https://en.wikipedia.org/wiki/Field_extension

Elliptic curve

point addition

(x , y) + (x , y) = (,)

G1

G2

(whiteboard explanation)

1 1 2 2 1 + dx x y y1 2 1 2

x y + x y1 2 2 1

1 − dx x y y1 2 1 2

y y − x x1 2 1 2

Pairings

3 typical types used for SNARKS:
BN (Barreto Naehrig) - used in Ethereum

BLS (Barreto Lynn Scott) - used in ZCash & Ethereum 2.0

MNT (Miyaji- Nakabayashi - Takano) - used in
CodaProtocol

y = x + b with embedding degree 12

function that maps (pairs) two points from sets S1 and S2
into another set S3

is a bilinear function

e(G ,G) −> G

the groups must be
cyclic

same prime order (r)

2 3

1 2 T

https://en.wikipedia.org/wiki/Bilinear_map

F , where
q = 21888242871839275222246405745257275088696311157297

823662689037894645226208583

F , where
r = 21888242871839275222246405745257275088548364400416

034343698204186575808495617

q

r

Bilinear Pairings

e(P + P ,Q) == e(P ,Q) ⋅ e(P ,Q)

e(P ,Q +Q) == e(P ,Q) ⋅ e(P ,Q)

e(aP , bQ) == e(P ,Q) == e(bP , aQ)

e(g , g) == e(g , 6 ⋅ g)

e(g , g) == e(6 ⋅ g , g)

e(g , g) == e(3 ⋅ g , 2g)

e(g , g) == e(2 ⋅ g , 3g)

1 2 1 1 1 2 1

1 1 2 1 1 1 2

ab

1 2
6

1 2

1 2
6

1 2

1 2
6

1 2

1 2
6

1 2

BLS signatures

(small overview, is offtopic here, but is interesting)

key generation
random private key x in [0, r − 1]

public key g

signature
h = Hash(m) (over G2)

signature σ = h

verification
check that: e(g,σ) == e(g ,Hash(m))
e(g,h) == e(g ,h)

x

x

x

x x

aggregate signatures
s = s0 + s1 + s2...

verify aggregated signatures

e(G,S) == e(P ,H(m))

e(G, s0 + s1 + s2...) == e(p0,H(m)) ⋅ e(p1,H(m)) ⋅ e(p2,H(m))...

More info:
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

Circuit compiler

not a software compiler -> a constraint prover

what this means

constraint concept

value0 == value1 <operation> value2

want to proof that a certain computation has been done
correctly

graphic of circuit with gates (whiteboard)

about high level programing languages for zkSNARKS, by
Harry Roberts: https://www.youtube.com/watch?
v=nKrBJo3E3FY

https://www.youtube.com/watch?v=nKrBJo3E3FY

Circuit code example:
f(x) = x + 2 ⋅ x+ 6

func exp5(private a):
 b = a * a
 c = a * b
 d = a * c
 e = a * d
 return e

func main(private s0, public s1):
 s2 = exp5(s0)
 s3 = s0 * 2
 s4 = s3 + s2
 s5 = s4 + 6
 equals(s1, s5)
 out = 1 * 1

5

Inputs and Witness

For a certain circuit, with the inputs that we calculate the Witness
for the circuit signals

private inputs: [8]
in this case the private input is the 'secret' x value that
computed into the equation gives the expected f(x)

public inputs: [32790]
in this case the public input is the result of the equation

signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]

witness: [1 32790 8 64 512 4096 32768 16 32784 32790 1]

R1CS

Rank 1 Constraint System

way to write down the constraints by 3 linear combinations

1 constraint per operation

(A,B,C) = A.s ⋅B.s− C.s = 0
from flat code constraints we can generate the R1CS

R1CS
(a s + a s + ... + a s) ⋅ (b s + b s + ... + b s) − (c s + c s + ... + c s) = 0

(a s + a s + ... + a s) ⋅ (b s + b s + ... + b s) − (c s + c s + ... + c s) = 0
(a s + a s + ... + a s) ⋅ (b s + b s + ... + b s) − (c s + c s + ... + c s) = 0
[...]
(a s + a s + ... + a s) ⋅ (b s + b s + ... + b s) − (c s + c s + ... + c s) = 0

*where s are the signals of the circuit, and we need to find a, b, c that satisfies the equations

11 1 12 2 1n n 11 1 12 2 1n n 11 1 12 2 1n n

21 1 22 2 2n n 21 1 22 2 2n n 21 1 22 2 2n n

31 1 32 2 3n n 31 1 32 2 3n n 31 1 32 2 3n n

m1 1 m2 2 mn n m1 1 m2 2 mn n m1 1 m2 2 mn n

R1CS constraint example:

signals: [one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]

witness: [1 32790 8 64 512 4096 32768 16 32784 32790 1]

First constraint flat code: b0 == s0 * s0

R1CS first constraint:
A = [00100000000]
B = [00100000000]
C = [00010000000]

1

1

1

R1CS example:

A B C:

[00100000000]
[00100000000]
[00100000000]
[00100000000]
[00100000000]
[00000011000]
[60000000100]
[00000000010]
[01000000000]
[10000000000]

[00100000000]
[00010000000]
[00001000000]
[00000100000]
[20000000000]
[10000000000]
[10000000000]
[10000000000]
[10000000000]
[10000000000]

[00010000000]
[00001000000]
[00000100000]
[00000010000]
[00000001000]
[00000000100]
[00000000010]
[01000000000]
[00000000010]
[00000000001]

QAP

Quadratic Arithmetic Programs

3 polynomials, linear combinations of R1CS

very good article about QAP by Vitalik Buterin
https://medium.com/@VitalikButerin/quadratic-arithmetic-
programs-from-zero-to-hero-f6d558cea649

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

Lagrange Interpolation

(Polynomial Interpolation)

for a group of points, we can find the smallest degree
polynomial that goees through all that points

this polynomial is unique for each group of points

L(x) = y l (x)

∑j=0
n

j j

Shamir's Secret Sharing

(small overview, is offtopic here, but is interesting)

from a secret to be shared, we generate 5 parts, but we can
specify a number of parts that are needed to recover the
secret

so for example, we generate 5 parts, where we will need only
3 of that 5 parts to recover the secret, and the order doesn't
matter

we have the ability to define the thresholds of M parts to be
created, and N parts to be able the recover

Shamir's Secret Sharing - Secret generation

we want that are necessary n parts of m to recover s
where n < m

need to create a polynomial of degree n− 1
f(x) = α + α x+ α x + α x + ... + +α x

where α is the secret s

α are random values that build the polynomial
*where α is the secret to share, and α are the random
values inside the FiniteF ield

0 1 2
2

3
3

n−1
n−1

0

i

0 i

f(x) = α + α x+ α x + α x + ... + +α x

the packets that we will generate are P = (x, f(x))
where x is each one of the values between 1 and m

P = (1, f(1))

P = (2, f(2))

P = (3, f(3))
...

P = (m, f(m))

0 1 2
2

3
3

n−1
n−1

1

2

3

m

Shamir's Secret Sharing - Secret recovery

in order to recover the secret s, we will need a minimum of n
points of the polynomial

the order doesn't matter

with that n parts, we do Lagrange Interpolation/Polynomial
Interpolation, recovering the original polynomial

QAP
(α (x)s + α (x)s + ... + α (x)s) ⋅ (β (x)s + β (x)s + ... + β (x)s) − (γ (x)s + γ (x)s + ... + γ (x)s) = P (x)

|----------------------- A(x) -----------------------|------------------------ B(x) -----------------------|------------------------ C(x) ------------------------|

P (x) = A(x)B(x) − C(x)
P (x) = Z(x)h(x)
Z(x): divisor polynomial

Z(x) = (x− x)(x− x)...(x− x) => ... => (x , 0), (x , 0), ..., (x , 0)
optimizations with FFT

h(x) = P (x)/Z(x)

1 1 2 2 n n 1 1 2 2 n n 1 1 2 2 n n

1 2 m 1 2 m

The following explanation is for the Pinocchio protocol, all the
examples will be for this protocol. The Groth16 is explained also in
the end of this slides.

https://eprint.iacr.org/2013/279.pdf
https://eprint.iacr.org/2016/260.pdf

Trusted Setup

concept

τ (Tau)

"Toxic waste"

Proving Key

Verification Key

g t , g t , g t , g t , g t , ...
g t , g t , g t , g t , g t , ...
1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

Proving Key:
pk = (C, pk , pk , pk , pk , pk , pk , pk) where:

pk = {A (τ)ρ P }

pk = {A (τ)α ρ P }

pk = {B (τ)ρ P }

pk = {B (τ)α ρ P }

pk = {C (τ)ρ P } = {C (τ)ρ ρ P }

pk = {C (τ)α ρ P } = {C (τ)α ρ ρ P }

pk = {β(A (τ)ρ +B (τ)ρ C (τ)ρ ρ)P }

pk = {τ P }

where:

d: degree of polynomial Z(x)

m: number of circuit signals

A A
′

B B
′

C C
′

H

A i A 1 i=0
m+3

A
′

i A A 1 i=n+1
m+3

B i B 2 i=0
m+3

B
′

i B B 1 i=0
m+3

C i C 1 i=0
m+3

i A B 1 i=0
m+3

C
′

i C C 1 i=0
m+3

i C A B 1 i=0
m+3

K i A i B i A B 1 i=0
m+3

H
i
1 i=0

d

Verification Key:
vk = (vk , vk , vk , vk , vk , vk , vk , vk)

vk = α P , vk = α P , vk = α P

vk = γP , vk = βγP , vk = βγP

vk = Z(τ)ρ ρ P , vk = (A (τ)ρ P)

A B C γ βγ
1

βγ
2

Z IC

A A 2 B B 1 C C 2

βγ 2 βγ
1

1 βγ
2

2

Z A B 2 IC i A 1 i=0
n

type Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH)
 G1T [][3]*big.Int // t encrypted in G1 curve, G1T == Pk.H
 A [][3]*big.Int
 B [][3][2]*big.Int
 C [][3]*big.Int
 Kp [][3]*big.Int
 Ap [][3]*big.Int
 Bp [][3]*big.Int
 Cp [][3]*big.Int
 Z []*big.Int
}

type Vk struct {
 Vka [3][2]*big.Int
 Vkb [3]*big.Int
 Vkc [3][2]*big.Int
 IC [][3]*big.Int
 G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma
 G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma
 G2Kg [3][2]*big.Int // g2 * Kgamma
 Vkz [3][2]*big.Int
}

// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct {
 Toxic struct {
 T *big.Int // trusted setup secret
 Ka *big.Int
 Kb *big.Int
 Kc *big.Int
 Kbeta *big.Int
 Kgamma *big.Int
 RhoA *big.Int
 RhoB *big.Int
 RhoC *big.Int
 }
 Pk Pk
 Vk Vk
}

Proofs generation

A,B,C,Z (from the QAP)

random δ , δ , δ

H(z) =

A(z) = A (z) + s A (x) + δ Z(z)

B(z) = B (z) + s B (x) + δ Z(z)

C(z) = C (z) + s B (x) + δ Z(z)
(where m is the number of public inputs)

1 2 3

Z(z)
A(z)B(z) − C(z)

0 ∑i=1
m

i i 1

0 ∑i=1
m

i i 2

0 ∑i=1
m

i i 2

π =< c, pk >

π =< c, pk >

π =< c, pk >
example:

for i := 0; i < circuit.NVars; i++ {
 proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(pk.B[i], w[i]))
 proof.PiBp = Utils.Bn.G1.Add(proof.PiBp, Utils.Bn.G1.MulScalar(pk.Bp[i], w[i]))
}

(c = 1 + witness+ δ + δ + δ

π =< c, pk >

π =< c, pk >

π =< c, pk >

π =< c, pk >

π =< h, pk H >

proof: π = (π ,π ,π ,π ,π ,π ,π ,π

A A

A
′

A
′

B B

1 2 3

B
′

B
′

C C

C
′

C
′

K K

H K

A A
′

B B
′

C C
′

K H

Proofs verification

vk = vk + x vk

Verification:

e(π , vk) == e(π , g)

e(vk ,π) == e(π , g)

e(π , vk) == e(π , g)

e(vk + π ,π) == e(π , vk) ⋅ e(π , g)

e(vk + π + π ,V) ⋅ e(vk ,π) == e(π , vk)

kx IC,0 ∑i=1
n

i IC,i

A a A′ 2

b B B′ 2

C c C ′ 2

kx A B H kz C 2

kx A C βγ
2

βγ
1

B k γ
1

Example (whiteboard):

= e(g h(t), g z(t))

= e(g h(t), g z(t))

= e(g h(t), g z(t))

e(g α (t)s + g α (t)s + ... + g α (t)s , g β (t)s + g β (t)s + ... + g β (t)s)
= e(g h(t), g z(t)) ⋅ e(g γ (t)s + g γ (t)s + ... + g γ (t)s , g)

e(π , g)C 2

e(π ,π)A B
1 2

e(C + C + ... + C , g)1 2 n 2

e(A +A + ... +A ,B +B + ... +B)1 2 n 1 2 n
1 2

e(g γ (t)s + g γ (t)s + ... + g γ (t)s , g)1 1 1 1 2 2 1 n n 2

e(g α (t)s + g α (t)s + ... + g α (t)s , g β (t)s + g β (t)s + ... + g β (t)s)1 1 1 1 2 2 1 n n 2 1 1 2 2 2 2 n n
1 2

1 1 1 1 2 2 1 n n 2 1 1 2 2 2 2 n n

1 2 1 1 1 1 2 2 1 n n 2

Groth16

Trusted Setup

τ = α,β, γ, δ,x

σ =

α,β, δ, {x }

{ }

{ }

{ }

σ = (β, γ, δ, {x })

(where u (x), v (x),w (x) are the QAP)

1

i
i=0
n−1

γ

βu (x) + αv (x) + w (x)i i i
i=0
l

δ

βu (x) + αv (x) + w (x)i i i
i=l+1
m

δ

x t(x)i

i=0
n−2

2
i

i=0
n−1

i i i

type Pk struct { // Proving Key
 BACDelta [][3]*big.Int // {(βui(x)+αvi(x)+wi(x)) / δ } from l+1 to m
 Z []*big.Int
 G1 struct {
 Alpha [3]*big.Int
 Beta [3]*big.Int
 Delta [3]*big.Int
 At [][3]*big.Int // {a(τ)} from 0 to m
 BACGamma [][3]*big.Int // {(βui(x)+αvi(x)+wi(x)) / γ } from 0 to m
 }
 G2 struct {
 Beta [3][2]*big.Int
 Gamma [3][2]*big.Int
 Delta [3][2]*big.Int
 BACGamma [][3][2]*big.Int // {(βui(x)+αvi(x)+wi(x)) / γ } from 0 to m
 }
 PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
}

type Vk struct {
 IC [][3]*big.Int
 G1 struct {
 Alpha [3]*big.Int
 }
 G2 struct {
 Beta [3][2]*big.Int
 Gamma [3][2]*big.Int
 Delta [3][2]*big.Int
 }
}

// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct {
 Toxic struct {
 T *big.Int // trusted setup secret
 Kalpha *big.Int
 Kbeta *big.Int
 Kgamma *big.Int
 Kdelta *big.Int
 }
 Pk Pk
 Vk Vk
}

Proofs Generation

π = α+ α u (x) + rδ
π = β + α v (x) + sδ

π = + π s+ π r − rsδ

π = π ,π ,π

A ∑i=0
m

i i

B ∑i=0
m

i i

C
δ

a (βu (x) + αv (x) + w (x)) + h(x)t(x)∑i=l+1
m

i i i i
A B

A
1

B
1

C
2

Proof Verification

[π] ⋅ [π] = [α] ⋅ [β] + a [] ⋅ [γ] + [π] ⋅ [δ]

e(π ,π) = e(α,β) ⋅ e(pub, γ) ⋅ e(π , δ)

A 1 B 2 1 2 ∑i=0
l

i
γ

βu (x) + αv (x) + w (x)i i i
1 2 C 1 2

A B C

How we use zkSNARKs in iden3

proving a credentials without revealing it's content

proving that an identity has a claim issued by another identity,
without revealing all the data

proving any property of an identity

ITF (Identity Transition Function), a way to prove with a
zkSNARK that an identity has been updated following the
defined protocol

identities can not cheat when issuing claims

etc

Other ideas for free time side project

Zendermint (Tendermint + zkSNARKs)

zkSNARK libraries

bellman (rust)

libsnark (c++)

snarkjs (javascript)

websnark (wasm)

go-snark (golang) [do not use in production]

Circuit languages

language snark library with which plugs in

Zokrates libsnark, bellman

Snarky libsnark

circom snarkjs, websnark, bellman

go-snark-circuit go-snark

https://github.com/zkcrypto/bellman
https://github.com/scipr-lab/libsnark
https://github.com/iden3/snarkjs
https://github.com/iden3/websnark
https://github.com/arnaucube/go-snark
https://github.com/Zokrates/ZoKrates
https://github.com/o1-labs/snarky
https://github.com/iden3/circom
https://github.com/arnaucube/go-snark

Utilities (Elliptic curve & Hash functions) inside
the zkSNARK

we work over F , where
r = 21888242871839275222246405745257275088548364400416

034343698204186575808495617

BabyJubJub

Mimc

Poseidon

r

Utilities (Elliptic curve & Hash functions) inside the zkSNARK

BabyJubJub

explaination: https://medium.com/zokrates/efficient-ecc-in-
zksnarks-using-zokrates-bd9ae37b8186

implementations:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

rust: https://github.com/arnaucube/babyjubjub-rs

c++: https://github.com/barryWhiteHat/baby_jubjub_ecc

https://medium.com/zokrates/efficient-ecc-in-zksnarks-using-zokrates-bd9ae37b8186
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib
https://github.com/arnaucube/babyjubjub-rs
https://github.com/barryWhiteHat/baby_jubjub_ecc

Utilities (Elliptic curve & Hash functions) inside the zkSNARK

Mimc7

explaination: https://eprint.iacr.org/2016/492.pdf

implementations in:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

rust: https://github.com/arnaucube/mimc-rs

https://eprint.iacr.org/2016/492.pdf
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib
https://github.com/arnaucube/mimc-rs

Utilities (Elliptic curve & Hash functions) inside the zkSNARK

Poseidon

explaination: https://eprint.iacr.org/2019/458.pdf

implementations in:
go: https://github.com/iden3/go-iden3-crypto

javascript & circom: https://github.com/iden3/circomlib

https://eprint.iacr.org/2019/458.pdf
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/circomlib

References
Succinct Non-Interactive Zero Knowledge for a von

Neumann Architecture , Eli Ben-Sasson, Alessandro Chiesa,
Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf

Pinocchio: Nearly practical verifiable computation ,
Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova
https://eprint.iacr.org/2013/279.pdf

On the Size of Pairing-based Non-interactive

Arguments , Jens Groth https://eprint.iacr.org/2016/260.pdf

(also all the links through the slides)

https://eprint.iacr.org/2013/879.pdf
https://eprint.iacr.org/2013/279.pdf
https://eprint.iacr.org/2016/260.pdf

arnaucube.com

github.com/arnaucube
twitter.com/arnaucube

2019-08-20

Thank you very much

iden3.io
github.com/iden3
twitter.com/identhree

https://arnaucube.com/
https://github.com/arnaucube
https://twitter.com/arnaucube
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://iden3.io/
https://github.com/iden3
https://twitter.com/identhree

