|
|
const bigInt = require("../src/bigint.js"); const ZqField = require("../src/zqfield.js");
const r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const s = 28; const nqr_to_t = bigInt("19103219067921713944291392827692070036145651957329286315305642004821462161904"); const t_minus_1_over_2 = bigInt("40770029410420498293352137776570907027550720424234931066070132305055"); const root_unity = bigInt("19103219067921713944291392827692070036145651957329286315305642004821462161904"); const t = bigInt("81540058820840996586704275553141814055101440848469862132140264610111");
const F = new ZqField(r);
function sqrt(a) {
let v = s; let z = nqr_to_t; let w = F.exp(a, t_minus_1_over_2); let x = F.mul(a, w); let b = F.mul(x, w);
// compute square root with Tonelli--Shanks
// (does not terminate if not a square!)
while (!F.equals(b, F.one)) { let m = 0; let b2m = b; while (!F.equals(b2m, F.one)) { /* invariant: b2m = b^(2^m) after entering this loop */ b2m = F.square(b2m); m += 1; }
let j = v-m-1; w = z; while (j > 0) { w = F.square(w); --j; } // w = z^2^(v-m-1)
z = F.square(w); b = F.mul(b, z); x = F.mul(x, w); v = m; }
return x; }
const p_minus1= F.sub(r,bigInt(1)); const gen = bigInt(bigInt(5)); const twoto28= F.exp(bigInt(2), bigInt(28)); const rem = F.div(p_minus1, twoto28); const w28 = F.exp(gen, rem);
const one = F.exp(w28, twoto28);
console.log(F.toString(w28)); console.log(w28.toString(10)); console.log(F.toString(one));
|