|
|
/* Copyright 2018 0kims association.
This file is part of zksnark JavaScript library.
zksnark JavaScript library is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
zksnark JavaScript library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with zksnark JavaScript library. If not, see <https://www.gnu.org/licenses/>.
*/
const chai = require("chai");
const bigInt = require("../src/bigint.js"); const PolField = require("../src/polfield.js"); const ZqField = require("../src/zqfield");
const assert = chai.assert;
const r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617");
describe("Polynomial field", () => { it("Should compute a multiplication", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(1), bigInt(2), bigInt(3)]; const b = [bigInt(1), bigInt(2), bigInt(3)]; const res = PF.mul(a,b);
assert(PF.equals(res, [bigInt(1), bigInt(4), bigInt(10), bigInt(12), bigInt(9)])); }); it("Should compute a multiplication 2", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(5), bigInt(1)]; const b = [bigInt(-5), bigInt(1)]; const res = PF.mul(a,b);
assert(PF.equals(res, [bigInt(-25), bigInt(0), bigInt(1)])); }); it("Should compute an addition", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(5), bigInt(1)]; const b = [bigInt(-5), bigInt(1)]; const res = PF.add(a,b);
assert(PF.equals(res, [bigInt(0), bigInt(2)])); }); it("Should compute a substraction", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(5), bigInt(3), bigInt(4)]; const b = [bigInt(5), bigInt(1)]; const res = PF.sub(a,b);
assert(PF.equals(res, [bigInt(0), bigInt(2), bigInt(4)])); }); it("Should compute reciprocal", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(4), bigInt(1), bigInt(-3), bigInt(-1), bigInt(2),bigInt(1), bigInt(-1), bigInt(1)]; const res = PF._reciprocal(a, 3, 0);
assert(PF.equals(res, [bigInt(12), bigInt(15), bigInt(3), bigInt(-4), bigInt(-3), bigInt(0), bigInt(1), bigInt(1)])); }); it("Should div2", () => { const PF = new PolField(new ZqField(r));
// x^6
const a = [bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(0),bigInt(0), bigInt(1)]; // x^5
const b = [bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(1)];
const res = PF._div2(6, b); assert(PF.equals(res, [bigInt(0), bigInt(1)]));
const res2 = PF.div(a,b); assert(PF.equals(res2, [bigInt(0), bigInt(1)])); }); it("Should div", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)]; const b = [bigInt(8), bigInt(9), bigInt(10), bigInt(11), bigInt(12), bigInt(13)];
const c = PF.mul(a,b); const d = PF.div(c,b);
assert(PF.equals(a, d)); }); it("Should div big/small", () => { const PF = new PolField(new ZqField(r));
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)]; const b = [bigInt(8), bigInt(9)];
const c = PF.mul(a,b); const d = PF.div(c,b);
assert(PF.equals(a, d)); }); it("Should div random big", () => { const PF = new PolField(new ZqField(r));
const a = []; const b = []; for (let i=0; i<1000; i++) a.push(bigInt(Math.floor(Math.random()*100000) -500000)); for (let i=0; i<900; i++) b.push(bigInt(Math.floor(Math.random()*100000) -500000));
const c = PF.mul(a,b);
const d = PF.div(c,b);
assert(PF.equals(a, d)); }).timeout(10000); it("Should evaluate and zero", () => { const PF = new PolField(new ZqField(r)); const p = [PF.F.neg(bigInt(2)), bigInt(1)]; const v = PF.eval(p, bigInt(2)); assert(PF.F.equals(v, bigInt(0))); }); it("Should evaluate bigger number", () => { const PF = new PolField(new ZqField(r)); const p = [bigInt(1), bigInt(2), bigInt(3)]; const v = PF.eval(p, bigInt(2)); assert(PF.F.equals(v, bigInt(17))); }); it("Should create lagrange polynomial minmal", () => { const PF = new PolField(new ZqField(r));
const points=[]; points.push([bigInt(1), bigInt(1)]); points.push([bigInt(2), bigInt(2)]); points.push([bigInt(3), bigInt(5)]);
const p=PF.lagrange(points);
for (let i=0; i<points.length; i++) { const v = PF.eval(p, points[i][0]); assert(PF.F.equals(v, points[i][1])); } }); it("Should create lagrange polynomial", () => { const PF = new PolField(new ZqField(r));
const points=[]; points.push([bigInt(1), bigInt(2)]); points.push([bigInt(2), bigInt(-2)]); points.push([bigInt(3), bigInt(0)]); points.push([bigInt(4), bigInt(453345)]);
const p=PF.lagrange(points);
for (let i=0; i<points.length; i++) { const v = PF.eval(p, points[i][0]); assert(PF.F.equals(v, points[i][1])); } }); it("Should test ruffini", () => { const PF = new PolField(new ZqField(r)); const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
const b = PF.mul(a, [bigInt(-7), bigInt(1)]); const c = PF.ruffini(b, bigInt(7));
assert(PF.equals(a, c)); }); it("Should test roots", () => { const PF = new PolField(new ZqField(r)); let rt;
rt = PF.oneRoot(256, 16); for (let i=0; i<8; i++) { rt = PF.F.mul(rt, rt); } assert(rt.equals(PF.F.one));
rt = PF.oneRoot(256, 15); for (let i=0; i<8; i++) { rt = PF.F.mul(rt, rt); } assert(rt.equals(PF.F.one));
rt = PF.oneRoot(8, 3); for (let i=0; i<3; i++) { rt = PF.F.mul(rt, rt); } assert(rt.equals(PF.F.one));
rt = PF.oneRoot(8, 0); assert(rt.equals(PF.F.one));
}); it("Should create a polynomial with values at roots with fft", () => { const PF = new PolField(new ZqField(r)); const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
const p = PF.ifft(a);
for (let i=0; i<a.length; i++) { const s = PF.F.affine(PF.eval(p, PF.oneRoot(8,i))); assert(s.equals(a[i])); }
});
});
|