@ -0,0 +1,325 @@ |
|||
const bigInt = require("big-integer"); |
|||
const assert = require("assert"); |
|||
|
|||
const F1Field = require("./f1field.js"); |
|||
const F2Field = require("./f2field.js"); |
|||
const F3Field = require("./f3field.js"); |
|||
const GCurve = require("./gcurve.js"); |
|||
|
|||
class BN128 { |
|||
|
|||
constructor() { |
|||
|
|||
this.q = bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208583"); |
|||
this.r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617"); |
|||
this.g1 = [ bigInt(1), bigInt(2) ]; |
|||
this.g2 = [ |
|||
[ |
|||
bigInt("10857046999023057135944570762232829481370756359578518086990519993285655852781"), |
|||
bigInt("11559732032986387107991004021392285783925812861821192530917403151452391805634") |
|||
], |
|||
[ |
|||
bigInt("8495653923123431417604973247489272438418190587263600148770280649306958101930"), |
|||
bigInt("4082367875863433681332203403145435568316851327593401208105741076214120093531") |
|||
] |
|||
]; |
|||
|
|||
this.F1 = new F1Field(this.q); |
|||
this.F2 = new F2Field(this.F1, bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582")); |
|||
this.G1 = new GCurve(this.F1, this.g1); |
|||
this.G2 = new GCurve(this.F2, this.g2); |
|||
this.F6 = new F3Field(this.F2, [ bigInt("9"), bigInt("1") ]); |
|||
this.F12 = new F2Field(this.F6, [ bigInt("9"), bigInt("1") ]); |
|||
const self = this; |
|||
this.F12._mulByNonResidue = function(a) { |
|||
return [self.F2.mul(this.nonResidue, a[2]), a[0], a[1]]; |
|||
}; |
|||
|
|||
this._preparePairing(); |
|||
|
|||
} |
|||
|
|||
_preparePairing() { |
|||
this.loopCount = bigInt("29793968203157093288");// CONSTANT
|
|||
|
|||
// Set loopCountNeg
|
|||
if (this.loopCount.isNegative()) { |
|||
this.loopCount = this.neg(); |
|||
this.loopCountNeg = true; |
|||
} else { |
|||
this.loopCountNeg = false; |
|||
} |
|||
|
|||
// Set loop_count_bits
|
|||
let lc = this.loopCount; |
|||
this.loop_count_bits = []; // Constant
|
|||
while (!lc.isZero()) { |
|||
this.loop_count_bits.push( lc.isOdd() ); |
|||
lc = lc.shiftRight(1); |
|||
} |
|||
|
|||
this.two_inv = this.F1.inverse(bigInt(2)); |
|||
|
|||
this.coef_b = bigInt(3); |
|||
this.twist = [bigInt(9) , bigInt(1)]; |
|||
this.twist_coeff_b = this.F2.mulEscalar( this.F2.inverse(this.twist), this.coef_b ); |
|||
|
|||
this.frobenius_coeffs_c1_1 = bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582"); |
|||
this.twist_mul_by_q_X = |
|||
[ |
|||
bigInt("21575463638280843010398324269430826099269044274347216827212613867836435027261"), |
|||
bigInt("10307601595873709700152284273816112264069230130616436755625194854815875713954") |
|||
]; |
|||
this.twist_mul_by_q_Y = |
|||
[ |
|||
bigInt("2821565182194536844548159561693502659359617185244120367078079554186484126554"), |
|||
bigInt("3505843767911556378687030309984248845540243509899259641013678093033130930403") |
|||
]; |
|||
|
|||
this.final_exponent = bigInt("552484233613224096312617126783173147097382103762957654188882734314196910839907541213974502761540629817009608548654680343627701153829446747810907373256841551006201639677726139946029199968412598804882391702273019083653272047566316584365559776493027495458238373902875937659943504873220554161550525926302303331747463515644711876653177129578303191095900909191624817826566688241804408081892785725967931714097716709526092261278071952560171111444072049229123565057483750161460024353346284167282452756217662335528813519139808291170539072125381230815729071544861602750936964829313608137325426383735122175229541155376346436093930287402089517426973178917569713384748081827255472576937471496195752727188261435633271238710131736096299798168852925540549342330775279877006784354801422249722573783561685179618816480037695005515426162362431072245638324744480"); |
|||
|
|||
} |
|||
|
|||
|
|||
pairing(p1, p2) { |
|||
|
|||
const pre1 = this.precomputeG1(p1); |
|||
const pre2 = this.precomputeG2(p2); |
|||
|
|||
const r1 = this.millerLoop(pre1, pre2); |
|||
|
|||
const res = this.finalExponentiation(r1); |
|||
|
|||
return res; |
|||
} |
|||
|
|||
|
|||
precomputeG1(p) { |
|||
const Pcopy = this.G1.affine(p); |
|||
|
|||
const res = {}; |
|||
res.PX = Pcopy[0]; |
|||
res.PY = Pcopy[1]; |
|||
|
|||
return res; |
|||
} |
|||
|
|||
precomputeG2(p) { |
|||
|
|||
const Qcopy = this.G2.affine(p); |
|||
|
|||
const res = { |
|||
QX: Qcopy[0], |
|||
QY: Qcopy[1], |
|||
coeffs: [] |
|||
}; |
|||
|
|||
const R = { |
|||
X: Qcopy[0], |
|||
Y: Qcopy[1], |
|||
Z: this.F2.one |
|||
}; |
|||
|
|||
let c; |
|||
|
|||
for (let i = this.loop_count_bits.length-2; i >= 0; --i) |
|||
{ |
|||
const bit = this.loop_count_bits[i]; |
|||
|
|||
c = this._doubleStep(R); |
|||
res.coeffs.push(c); |
|||
|
|||
if (bit) |
|||
{ |
|||
c = this._addStep(Qcopy, R); |
|||
res.coeffs.push(c); |
|||
} |
|||
} |
|||
|
|||
const Q1 = this.G2.affine(this._g2MulByQ(Qcopy)); |
|||
assert(this.F2.equals(Q1[2], this.F2.one)); |
|||
const Q2 = this.G2.affine(this._g2MulByQ(Q1)); |
|||
assert(this.F2.equals(Q2[2], this.F2.one)); |
|||
|
|||
if (this.loopCountNef) |
|||
{ |
|||
R.Y = this.F2.neg(R.Y); |
|||
} |
|||
Q2[1] = this.F2.neg(Q2[1]); |
|||
|
|||
c = this._addStep(Q1, R); |
|||
res.coeffs.push(c); |
|||
|
|||
c = this._addStep(Q2, R); |
|||
res.coeffs.push(c); |
|||
|
|||
return res; |
|||
} |
|||
|
|||
millerLoop(pre1, pre2) { |
|||
let f = this.F12.one; |
|||
|
|||
let idx = 0; |
|||
|
|||
let c; |
|||
|
|||
for (let i = this.loop_count_bits.length-2; i >= 0; --i) |
|||
{ |
|||
const bit = this.loop_count_bits[i]; |
|||
|
|||
/* code below gets executed for all bits (EXCEPT the MSB itself) of |
|||
alt_bn128_param_p (skipping leading zeros) in MSB to LSB |
|||
order */ |
|||
|
|||
c = pre2.coeffs[idx++]; |
|||
f = this.F12.square(f); |
|||
f = this._mul_by_024( |
|||
f, |
|||
c.ell_0, |
|||
this.F2.mulEscalar(c.ell_VW , pre1.PY), |
|||
this.F2.mulEscalar(c.ell_VV , pre1.PX, )); |
|||
|
|||
if (bit) |
|||
{ |
|||
c = pre2.coeffs[idx++]; |
|||
f = this._mul_by_024( |
|||
f, |
|||
c.ell_0, |
|||
this.F2.mulEscalar(c.ell_VW, pre1.PY, ), |
|||
this.F2.mulEscalar(c.ell_VV, pre1.PX, )); |
|||
} |
|||
|
|||
} |
|||
|
|||
if (this.loopCountNef) |
|||
{ |
|||
f = this.F12.inverse(f); |
|||
} |
|||
|
|||
c = pre2.coeffs[idx++]; |
|||
f = this._mul_by_024( |
|||
f, |
|||
c.ell_0, |
|||
this.F2.mulEscalar(c.ell_VW, pre1.PY), |
|||
this.F2.mulEscalar(c.ell_VV, pre1.PX)); |
|||
|
|||
c = pre2.coeffs[idx++]; |
|||
f = this._mul_by_024( |
|||
f, |
|||
c.ell_0, |
|||
this.F2.mulEscalar(c.ell_VW, pre1.PY, ), |
|||
this.F2.mulEscalar(c.ell_VV, pre1.PX)); |
|||
|
|||
return f; |
|||
} |
|||
|
|||
finalExponentiation(elt) { |
|||
// TODO: There is an optimization in FF
|
|||
|
|||
const res = this.F12.exp(elt,this.final_exponent); |
|||
|
|||
return res; |
|||
} |
|||
|
|||
_doubleStep(current) { |
|||
const X = current.X; |
|||
const Y = current.Y; |
|||
const Z = current.Z; |
|||
|
|||
const A = this.F2.mulEscalar(this.F2.mul(X,Y), this.two_inv); // A = X1 * Y1 / 2
|
|||
const B = this.F2.square(Y); // B = Y1^2
|
|||
const C = this.F2.square(Z); // C = Z1^2
|
|||
const D = this.F2.add(C, this.F2.add(C,C)); // D = 3 * C
|
|||
const E = this.F2.mul(this.twist_coeff_b, D); // E = twist_b * D
|
|||
const F = this.F2.add(E, this.F2.add(E,E)); // F = 3 * E
|
|||
const G = |
|||
this.F2.mulEscalar( |
|||
this.F2.add( B , F ), |
|||
this.two_inv); // G = (B+F)/2
|
|||
const H = |
|||
this.F2.sub( |
|||
this.F2.square( this.F2.add(Y,Z) ), |
|||
this.F2.add( B , C)); // H = (Y1+Z1)^2-(B+C)
|
|||
const I = this.F2.sub(E, B); // I = E-B
|
|||
const J = this.F2.square(X); // J = X1^2
|
|||
const E_squared = this.F2.square(E); // E_squared = E^2
|
|||
|
|||
current.X = this.F2.mul( A, this.F2.sub(B,F) ); // X3 = A * (B-F)
|
|||
current.Y = |
|||
this.F2.sub( |
|||
this.F2.sub( this.F2.square(G) , E_squared ), |
|||
this.F2.add( E_squared , E_squared )); // Y3 = G^2 - 3*E^2
|
|||
current.Z = this.F2.mul( B, H ); // Z3 = B * H
|
|||
const c = { |
|||
ell_0 : this.F2.mul( I, this.twist), // ell_0 = xi * I
|
|||
ell_VW: this.F2.neg( H ), // ell_VW = - H (later: * yP)
|
|||
ell_VV: this.F2.add( J , this.F2.add(J,J) ) // ell_VV = 3*J (later: * xP)
|
|||
}; |
|||
|
|||
return c; |
|||
} |
|||
|
|||
_addStep(base, current) { |
|||
|
|||
const X1 = current.X; |
|||
const Y1 = current.Y; |
|||
const Z1 = current.Z; |
|||
const x2 = base[0]; |
|||
const y2 = base[1]; |
|||
|
|||
const D = this.F2.sub( X1, this.F2.mul(x2,Z1) ); // D = X1 - X2*Z1
|
|||
const E = this.F2.sub( Y1, this.F2.mul(y2,Z1) ); // E = Y1 - Y2*Z1
|
|||
const F = this.F2.square(D); // F = D^2
|
|||
const G = this.F2.square(E); // G = E^2
|
|||
const H = this.F2.mul(D,F); // H = D*F
|
|||
const I = this.F2.mul(X1,F); // I = X1 * F
|
|||
const J = |
|||
this.F2.sub( |
|||
this.F2.add( H, this.F2.mul(Z1,G) ), |
|||
this.F2.add( I, I )); // J = H + Z1*G - (I+I)
|
|||
|
|||
current.X = this.F2.mul( D , J ); // X3 = D*J
|
|||
current.Y = |
|||
this.F2.sub( |
|||
this.F2.mul( E , this.F2.sub(I,J) ), |
|||
this.F2.mul( H , Y1)); // Y3 = E*(I-J)-(H*Y1)
|
|||
current.Z = this.F2.mul(Z1,H); |
|||
const c = { |
|||
ell_0 : |
|||
this.F2.mul( |
|||
this.twist, |
|||
this.F2.sub( |
|||
this.F2.mul(E , x2), |
|||
this.F2.mul(D , y2))), // ell_0 = xi * (E * X2 - D * Y2)
|
|||
ell_VV : this.F2.neg(E), // ell_VV = - E (later: * xP)
|
|||
ell_VW : D // ell_VW = D (later: * yP )
|
|||
}; |
|||
|
|||
return c; |
|||
} |
|||
|
|||
_mul_by_024(a, ell_0, ell_VW, ell_VV) { |
|||
|
|||
const b = [ |
|||
[ell_0, this.F2.zero, ell_VV], |
|||
[this.F2.zero, ell_VW, this.F2.zero] |
|||
]; |
|||
|
|||
return this.F12.mul(a,b); |
|||
|
|||
// TODO There is a better version on libff. It should be ported.
|
|||
} |
|||
|
|||
_g2MulByQ(p) { |
|||
const fmx = [p[0][0], this.F1.mul(p[0][1], this.frobenius_coeffs_c1_1 )]; |
|||
const fmy = [p[1][0], this.F1.mul(p[1][1], this.frobenius_coeffs_c1_1 )]; |
|||
const fmz = [p[2][0], this.F1.mul(p[2][1], this.frobenius_coeffs_c1_1 )]; |
|||
return [ |
|||
this.F2.mul(this.twist_mul_by_q_X , fmx), |
|||
this.F2.mul(this.twist_mul_by_q_Y , fmy), |
|||
fmz |
|||
]; |
|||
} |
|||
} |
|||
|
|||
module.exports = BN128; |
@ -1,55 +0,0 @@ |
|||
|
|||
|
|||
|
|||
class F12Field { |
|||
constructor(p) { |
|||
this.p = n; |
|||
} |
|||
|
|||
add(a, b) { |
|||
const maxGrade = Math.max(a.length, b.length); |
|||
const res = new Array(maxGrade); |
|||
for (let i=0; i<maxGrade; i++) { |
|||
res[i] = this.F.add(a[i], b[i]); |
|||
} |
|||
return this._reduce(res); |
|||
} |
|||
|
|||
sub(a, b) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
neg(a) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
mul(a, b) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
inverse(a, b) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
div(a, b) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
isZero(a) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
mul_by_024(a, ell0, ellVW, ellVV) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
} |
|||
|
|||
module.exports = F2Field; |
@ -0,0 +1,158 @@ |
|||
const fUtils = require("./futils.js"); |
|||
|
|||
class F3Field { |
|||
constructor(F, nonResidue) { |
|||
this.F = F; |
|||
this.zero = [this.F.zero, this.F.zero, this.F.zero]; |
|||
this.one = [this.F.one, this.F.zero, this.F.zero]; |
|||
this.nonResidue = nonResidue; |
|||
} |
|||
|
|||
_mulByNonResidue(a) { |
|||
return this.F.mul(this.nonResidue, a); |
|||
} |
|||
|
|||
copy(a) { |
|||
return [this.F.copy(a[0]), this.F.copy(a[1]), this.F.copy(a[2])]; |
|||
} |
|||
|
|||
add(a, b) { |
|||
return [ |
|||
this.F.add(a[0], b[0]), |
|||
this.F.add(a[1], b[1]), |
|||
this.F.add(a[2], b[2]) |
|||
]; |
|||
} |
|||
|
|||
double(a) { |
|||
return this.add(a,a); |
|||
} |
|||
|
|||
sub(a, b) { |
|||
return [ |
|||
this.F.sub(a[0], b[0]), |
|||
this.F.sub(a[1], b[1]), |
|||
this.F.sub(a[2], b[2]) |
|||
]; |
|||
} |
|||
|
|||
neg(a) { |
|||
return this.sub(this.zero, a); |
|||
} |
|||
|
|||
mul(a, b) { |
|||
|
|||
const aA = this.F.mul(a[0] , b[0]); |
|||
const bB = this.F.mul(a[1] , b[1]); |
|||
const cC = this.F.mul(a[2] , b[2]); |
|||
|
|||
return [ |
|||
this.F.add( |
|||
aA, |
|||
this._mulByNonResidue( |
|||
this.F.sub( |
|||
this.F.mul( |
|||
this.F.add(a[1], a[2]), |
|||
this.F.add(b[1], b[2])), |
|||
this.F.add(bB, cC)))), // aA + non_residue*((b+c)*(B+C)-bB-cC),
|
|||
|
|||
this.F.add( |
|||
this.F.sub( |
|||
this.F.mul( |
|||
this.F.add(a[0], a[1]), |
|||
this.F.add(b[0], b[1])), |
|||
this.F.add(aA, bB)), |
|||
this._mulByNonResidue( cC)), // (a+b)*(A+B)-aA-bB+non_residue*cC
|
|||
|
|||
this.F.add( |
|||
this.F.sub( |
|||
this.F.mul( |
|||
this.F.add(a[0], a[2]), |
|||
this.F.add(b[0], b[2])), |
|||
this.F.add(aA, cC)), |
|||
bB)]; // (a+c)*(A+C)-aA+bB-cC)
|
|||
} |
|||
|
|||
inverse(a) { |
|||
const t0 = this.F.square(a[0]); // t0 = a^2 ;
|
|||
const t1 = this.F.square(a[1]); // t1 = b^2 ;
|
|||
const t2 = this.F.square(a[2]); // t2 = c^2;
|
|||
const t3 = this.F.mul(a[0],a[1]); // t3 = ab
|
|||
const t4 = this.F.mul(a[0],a[2]); // t4 = ac
|
|||
const t5 = this.F.mul(a[1],a[2]); // t5 = bc;
|
|||
// c0 = t0 - non_residue * t5;
|
|||
const c0 = this.F.sub(t0, this._mulByNonResidue(t5)); |
|||
// c1 = non_residue * t2 - t3;
|
|||
const c1 = this.F.sub(this._mulByNonResidue(t2), t3); |
|||
const c2 = this.F.sub(t1, t4); // c2 = t1-t4
|
|||
|
|||
// t6 = (a * c0 + non_residue * (c * c1 + b * c2)).inverse();
|
|||
const t6 = |
|||
this.F.inverse( |
|||
this.F.add( |
|||
this.F.mul(a[0], c0), |
|||
this._mulByNonResidue( |
|||
this.F.add( |
|||
this.F.mul(a[2], c1), |
|||
this.F.mul(a[1], c2))))); |
|||
|
|||
return [ |
|||
this.F.mul(t6, c0), // t6*c0
|
|||
this.F.mul(t6, c1), // t6*c1
|
|||
this.F.mul(t6, c2)]; // t6*c2
|
|||
} |
|||
|
|||
div(a, b) { |
|||
return this.mul(a, this.inverse(b)); |
|||
} |
|||
|
|||
square(a) { |
|||
const s0 = this.F.square(a[0]); // s0 = a^2
|
|||
const ab = this.F.mul(a[0], a[1]); // ab = a*b
|
|||
const s1 = this.F.add(ab, ab); // s1 = 2ab;
|
|||
const s2 = this.F.square( |
|||
this.F.add(this.F.sub(a[0],a[1]), a[2])); // s2 = (a - b + c)^2;
|
|||
const bc = this.F.mul(a[1],a[2]); // bc = b*c
|
|||
const s3 = this.F.add(bc, bc); // s3 = 2*bc
|
|||
const s4 = this.F.square(a[2]); // s4 = c^2
|
|||
|
|||
|
|||
return [ |
|||
this.F.add( |
|||
s0, |
|||
this._mulByNonResidue(s3)), // s0 + non_residue * s3,
|
|||
this.F.add( |
|||
s1, |
|||
this._mulByNonResidue(s4)), // s1 + non_residue * s4,
|
|||
this.F.sub( |
|||
this.F.add( this.F.add(s1, s2) , s3 ), |
|||
this.F.add(s0, s4))]; // s1 + s2 + s3 - s0 - s4
|
|||
} |
|||
|
|||
isZero(a) { |
|||
return this.F.isZero(a[0]) && this.F.isZero(a[1]) && this.F.isZero(a[2]); |
|||
} |
|||
|
|||
equals(a, b) { |
|||
return this.F.equals(a[0], b[0]) && this.F.equals(a[1], b[1]) && this.F.equals(a[2], b[2]); |
|||
} |
|||
|
|||
affine(a) { |
|||
return [this.F.affine(a[0]), this.F.affine(a[1]), this.F.affine(a[2])]; |
|||
} |
|||
|
|||
mulEscalar(base, e) { |
|||
return fUtils.mulEscalar(this, base, e); |
|||
} |
|||
|
|||
exp(base, e) { |
|||
return fUtils.exp(this, base, e); |
|||
} |
|||
|
|||
toString(a) { |
|||
const cp = this.affine(a); |
|||
return `[ ${this.F.toString(cp[0])} , ${this.F.toString(cp[1])}, ${this.F.toString(cp[2])} ]`; |
|||
} |
|||
} |
|||
|
|||
module.exports = F3Field; |
@ -0,0 +1,34 @@ |
|||
const bigInt = require("big-integer"); |
|||
|
|||
exports.mulEscalar = (F, base, e) =>{ |
|||
let res = F.zero; |
|||
let rem = bigInt(e); |
|||
let exp = base; |
|||
|
|||
while (! rem.isZero()) { |
|||
if (rem.isOdd()) { |
|||
res = F.add(res, exp); |
|||
} |
|||
exp = F.double(exp); |
|||
rem = rem.shiftRight(1); |
|||
} |
|||
|
|||
return res; |
|||
}; |
|||
|
|||
|
|||
exports.exp = (F, base, e) =>{ |
|||
let res = F.one; |
|||
let rem = bigInt(e); |
|||
let exp = base; |
|||
|
|||
while (! rem.isZero()) { |
|||
if (rem.isOdd()) { |
|||
res = F.mul(res, exp); |
|||
} |
|||
exp = F.square(exp); |
|||
rem = rem.shiftRight(1); |
|||
} |
|||
|
|||
return res; |
|||
}; |
@ -1,20 +0,0 @@ |
|||
const bigInt = require("big-integer"); |
|||
const ZnField = require("./znfield.js"); |
|||
|
|||
module.eports = class Gt { |
|||
|
|||
constructor() { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
mul(p1, p2) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
equal(p1, p2) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
}; |
@ -1,72 +1,151 @@ |
|||
const bigInt = require("big-integer"); |
|||
const F1Field = require("../src/f1field.js"); |
|||
const F2Field = require("../src/f2field.js"); |
|||
const GCurve = require("../src/gcurve.js"); |
|||
const constants = require("../src/constants.js"); |
|||
const chai = require("chai"); |
|||
|
|||
const bigInt = require("big-integer"); |
|||
const BN128 = require("../src/BN128.js"); |
|||
|
|||
const assert = chai.assert; |
|||
|
|||
describe("Curve G1 Test", () => { |
|||
it ("r*one == 0", () => { |
|||
const F1 = new F1Field(constants.q); |
|||
const G1 = new GCurve(F1, constants.g1); |
|||
it("r*one == 0", () => { |
|||
const bn128 = new BN128(); |
|||
|
|||
const res = G1.mulEscalar(G1.g, constants.r); |
|||
const res = bn128.G1.mulEscalar(bn128.G1.g, bn128.r); |
|||
|
|||
assert(G1.equals(res, G1.zero), "G1 does not have range r"); |
|||
assert(bn128.G1.equals(res, bn128.G1.zero), "G1 does not have range r"); |
|||
}); |
|||
|
|||
it("Should add match in various in G1", () => { |
|||
const F1 = new F1Field(constants.q); |
|||
const G1 = new GCurve(F1, constants.g1); |
|||
|
|||
const bn128 = new BN128(); |
|||
|
|||
const r1 = bigInt(33); |
|||
const r2 = bigInt(44); |
|||
|
|||
const gr1 = G1.mulEscalar(G1.g, r1); |
|||
const gr2 = G1.mulEscalar(G1.g, r2); |
|||
const gr1 = bn128.G1.mulEscalar(bn128.G1.g, r1); |
|||
const gr2 = bn128.G1.mulEscalar(bn128.G1.g, r2); |
|||
|
|||
const grsum1 = G1.add(gr1, gr2); |
|||
const grsum1 = bn128.G1.add(gr1, gr2); |
|||
|
|||
const grsum2 = G1.mulEscalar(G1.g, r1.add(r2)); |
|||
const grsum2 = bn128.G1.mulEscalar(bn128.G1.g, r1.add(r2)); |
|||
|
|||
assert(G1.equals(grsum1, grsum2)); |
|||
assert(bn128.G1.equals(grsum1, grsum2)); |
|||
}); |
|||
}); |
|||
|
|||
describe("Curve G2 Test", () => { |
|||
it ("r*one == 0", () => { |
|||
const F1 = new F1Field(constants.q); |
|||
const F2 = new F2Field(F1, constants.f2nonResidue); |
|||
const G2 = new GCurve(F2, constants.g2); |
|||
const bn128 = new BN128(); |
|||
|
|||
const res = G2.mulEscalar(G2.g, constants.r); |
|||
const res = bn128.G2.mulEscalar(bn128.G2.g, bn128.r); |
|||
|
|||
assert(G2.equals(res, G2.zero), "G2 does not have range r"); |
|||
assert(bn128.G2.equals(res, bn128.G2.zero), "G2 does not have range r"); |
|||
}); |
|||
|
|||
it("Should add match in various in G2", () => { |
|||
const F1 = new F1Field(constants.q); |
|||
const F2 = new F2Field(F1, constants.f2nonResidue); |
|||
const G2 = new GCurve(F2, constants.g2); |
|||
const bn128 = new BN128(); |
|||
|
|||
const r1 = bigInt(33); |
|||
const r2 = bigInt(44); |
|||
|
|||
const gr1 = G2.mulEscalar(G2.g, r1); |
|||
const gr2 = G2.mulEscalar(G2.g, r2); |
|||
const gr1 = bn128.G2.mulEscalar(bn128.G2.g, r1); |
|||
const gr2 = bn128.G2.mulEscalar(bn128.G2.g, r2); |
|||
|
|||
const grsum1 = G2.add(gr1, gr2); |
|||
const grsum1 = bn128.G2.add(gr1, gr2); |
|||
|
|||
const grsum2 = G2.mulEscalar(G2.g, r1.add(r2)); |
|||
const grsum2 = bn128.G2.mulEscalar(bn128.G2.g, r1.add(r2)); |
|||
|
|||
/* |
|||
console.log(G2.toString(grsum1)); |
|||
console.log(G2.toString(grsum2)); |
|||
*/ |
|||
|
|||
assert(G2.equals(grsum1, grsum2)); |
|||
assert(bn128.G2.equals(grsum1, grsum2)); |
|||
}); |
|||
}); |
|||
|
|||
describe("F6 testing", () => { |
|||
it("Should multiply and divide in F6", () => { |
|||
const bn128 = new BN128(); |
|||
const a = |
|||
[ |
|||
[bigInt("1"), bigInt("2")], |
|||
[bigInt("3"), bigInt("4")], |
|||
[bigInt("5"), bigInt("6")] |
|||
]; |
|||
const b = |
|||
[ |
|||
[bigInt("12"), bigInt("11")], |
|||
[bigInt("10"), bigInt("9")], |
|||
[bigInt("8"), bigInt("7")] |
|||
]; |
|||
const c = bn128.F6.mul(a,b); |
|||
const d = bn128.F6.div(c,b); |
|||
|
|||
assert(bn128.F6.equals(a, d)); |
|||
}); |
|||
}); |
|||
|
|||
describe("F12 testing", () => { |
|||
it("Should multiply and divide in F12", () => { |
|||
const bn128 = new BN128(); |
|||
const a = |
|||
[ |
|||
[ |
|||
[bigInt("1"), bigInt("2")], |
|||
[bigInt("3"), bigInt("4")], |
|||
[bigInt("5"), bigInt("6")] |
|||
], |
|||
[ |
|||
[bigInt("7"), bigInt("8")], |
|||
[bigInt("9"), bigInt("10")], |
|||
[bigInt("11"), bigInt("12")] |
|||
] |
|||
]; |
|||
const b = |
|||
[ |
|||
[ |
|||
[bigInt("12"), bigInt("11")], |
|||
[bigInt("10"), bigInt("9")], |
|||
[bigInt("8"), bigInt("7")] |
|||
], |
|||
[ |
|||
[bigInt("6"), bigInt("5")], |
|||
[bigInt("4"), bigInt("3")], |
|||
[bigInt("2"), bigInt("1")] |
|||
] |
|||
]; |
|||
const c = bn128.F12.mul(a,b); |
|||
const d = bn128.F12.div(c,b); |
|||
|
|||
assert(bn128.F12.equals(a, d)); |
|||
}); |
|||
}); |
|||
|
|||
describe("Pairing", () => { |
|||
it("Should match pairing", () => { |
|||
const bn128 = new BN128(); |
|||
|
|||
|
|||
const g1a = bn128.G1.mulEscalar(bn128.G1.g, 25); |
|||
const g2a = bn128.G2.mulEscalar(bn128.G2.g, 30); |
|||
|
|||
const g1b = bn128.G1.mulEscalar(bn128.G1.g, 30); |
|||
const g2b = bn128.G2.mulEscalar(bn128.G2.g, 25); |
|||
|
|||
|
|||
const pre1a = bn128.precomputeG1(g1a); |
|||
const pre2a = bn128.precomputeG2(g2a); |
|||
const pre1b = bn128.precomputeG1(g1b); |
|||
const pre2b = bn128.precomputeG2(g2b); |
|||
|
|||
const r1 = bn128.millerLoop(pre1a, pre2a); |
|||
const r2 = bn128.millerLoop(pre1b, pre2b); |
|||
|
|||
const rbe = bn128.F12.mul(r1, bn128.F12.inverse(r2)); |
|||
|
|||
const res = bn128.finalExponentiation(rbe); |
|||
|
|||
assert(bn128.F12.equals(res, bn128.F12.one)); |
|||
}).timeout(10000); |
|||
|
|||
}); |