Browse Source

Pairing working

master
Jordi Baylina 6 years ago
parent
commit
a878d8ff59
No known key found for this signature in database GPG Key ID: 7480C80C1BE43112
12 changed files with 695 additions and 151 deletions
  1. +325
    -0
      src/bn128.js
  2. +6
    -3
      src/constants.js
  3. +0
    -55
      src/f12field.js
  4. +13
    -4
      src/f1field.js
  5. +19
    -7
      src/f2field.js
  6. +158
    -0
      src/f3field.js
  7. +0
    -0
      src/f6field.js
  8. +34
    -0
      src/futils.js
  9. +2
    -13
      src/gcurve.js
  10. +0
    -20
      src/gt.js
  11. +29
    -19
      src/pairing.js
  12. +109
    -30
      test/algebra.js

+ 325
- 0
src/bn128.js

@ -0,0 +1,325 @@
const bigInt = require("big-integer");
const assert = require("assert");
const F1Field = require("./f1field.js");
const F2Field = require("./f2field.js");
const F3Field = require("./f3field.js");
const GCurve = require("./gcurve.js");
class BN128 {
constructor() {
this.q = bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208583");
this.r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617");
this.g1 = [ bigInt(1), bigInt(2) ];
this.g2 = [
[
bigInt("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
bigInt("11559732032986387107991004021392285783925812861821192530917403151452391805634")
],
[
bigInt("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
bigInt("4082367875863433681332203403145435568316851327593401208105741076214120093531")
]
];
this.F1 = new F1Field(this.q);
this.F2 = new F2Field(this.F1, bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582"));
this.G1 = new GCurve(this.F1, this.g1);
this.G2 = new GCurve(this.F2, this.g2);
this.F6 = new F3Field(this.F2, [ bigInt("9"), bigInt("1") ]);
this.F12 = new F2Field(this.F6, [ bigInt("9"), bigInt("1") ]);
const self = this;
this.F12._mulByNonResidue = function(a) {
return [self.F2.mul(this.nonResidue, a[2]), a[0], a[1]];
};
this._preparePairing();
}
_preparePairing() {
this.loopCount = bigInt("29793968203157093288");// CONSTANT
// Set loopCountNeg
if (this.loopCount.isNegative()) {
this.loopCount = this.neg();
this.loopCountNeg = true;
} else {
this.loopCountNeg = false;
}
// Set loop_count_bits
let lc = this.loopCount;
this.loop_count_bits = []; // Constant
while (!lc.isZero()) {
this.loop_count_bits.push( lc.isOdd() );
lc = lc.shiftRight(1);
}
this.two_inv = this.F1.inverse(bigInt(2));
this.coef_b = bigInt(3);
this.twist = [bigInt(9) , bigInt(1)];
this.twist_coeff_b = this.F2.mulEscalar( this.F2.inverse(this.twist), this.coef_b );
this.frobenius_coeffs_c1_1 = bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582");
this.twist_mul_by_q_X =
[
bigInt("21575463638280843010398324269430826099269044274347216827212613867836435027261"),
bigInt("10307601595873709700152284273816112264069230130616436755625194854815875713954")
];
this.twist_mul_by_q_Y =
[
bigInt("2821565182194536844548159561693502659359617185244120367078079554186484126554"),
bigInt("3505843767911556378687030309984248845540243509899259641013678093033130930403")
];
this.final_exponent = bigInt("552484233613224096312617126783173147097382103762957654188882734314196910839907541213974502761540629817009608548654680343627701153829446747810907373256841551006201639677726139946029199968412598804882391702273019083653272047566316584365559776493027495458238373902875937659943504873220554161550525926302303331747463515644711876653177129578303191095900909191624817826566688241804408081892785725967931714097716709526092261278071952560171111444072049229123565057483750161460024353346284167282452756217662335528813519139808291170539072125381230815729071544861602750936964829313608137325426383735122175229541155376346436093930287402089517426973178917569713384748081827255472576937471496195752727188261435633271238710131736096299798168852925540549342330775279877006784354801422249722573783561685179618816480037695005515426162362431072245638324744480");
}
pairing(p1, p2) {
const pre1 = this.precomputeG1(p1);
const pre2 = this.precomputeG2(p2);
const r1 = this.millerLoop(pre1, pre2);
const res = this.finalExponentiation(r1);
return res;
}
precomputeG1(p) {
const Pcopy = this.G1.affine(p);
const res = {};
res.PX = Pcopy[0];
res.PY = Pcopy[1];
return res;
}
precomputeG2(p) {
const Qcopy = this.G2.affine(p);
const res = {
QX: Qcopy[0],
QY: Qcopy[1],
coeffs: []
};
const R = {
X: Qcopy[0],
Y: Qcopy[1],
Z: this.F2.one
};
let c;
for (let i = this.loop_count_bits.length-2; i >= 0; --i)
{
const bit = this.loop_count_bits[i];
c = this._doubleStep(R);
res.coeffs.push(c);
if (bit)
{
c = this._addStep(Qcopy, R);
res.coeffs.push(c);
}
}
const Q1 = this.G2.affine(this._g2MulByQ(Qcopy));
assert(this.F2.equals(Q1[2], this.F2.one));
const Q2 = this.G2.affine(this._g2MulByQ(Q1));
assert(this.F2.equals(Q2[2], this.F2.one));
if (this.loopCountNef)
{
R.Y = this.F2.neg(R.Y);
}
Q2[1] = this.F2.neg(Q2[1]);
c = this._addStep(Q1, R);
res.coeffs.push(c);
c = this._addStep(Q2, R);
res.coeffs.push(c);
return res;
}
millerLoop(pre1, pre2) {
let f = this.F12.one;
let idx = 0;
let c;
for (let i = this.loop_count_bits.length-2; i >= 0; --i)
{
const bit = this.loop_count_bits[i];
/* code below gets executed for all bits (EXCEPT the MSB itself) of
alt_bn128_param_p (skipping leading zeros) in MSB to LSB
order */
c = pre2.coeffs[idx++];
f = this.F12.square(f);
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mulEscalar(c.ell_VW , pre1.PY),
this.F2.mulEscalar(c.ell_VV , pre1.PX, ));
if (bit)
{
c = pre2.coeffs[idx++];
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mulEscalar(c.ell_VW, pre1.PY, ),
this.F2.mulEscalar(c.ell_VV, pre1.PX, ));
}
}
if (this.loopCountNef)
{
f = this.F12.inverse(f);
}
c = pre2.coeffs[idx++];
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mulEscalar(c.ell_VW, pre1.PY),
this.F2.mulEscalar(c.ell_VV, pre1.PX));
c = pre2.coeffs[idx++];
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mulEscalar(c.ell_VW, pre1.PY, ),
this.F2.mulEscalar(c.ell_VV, pre1.PX));
return f;
}
finalExponentiation(elt) {
// TODO: There is an optimization in FF
const res = this.F12.exp(elt,this.final_exponent);
return res;
}
_doubleStep(current) {
const X = current.X;
const Y = current.Y;
const Z = current.Z;
const A = this.F2.mulEscalar(this.F2.mul(X,Y), this.two_inv); // A = X1 * Y1 / 2
const B = this.F2.square(Y); // B = Y1^2
const C = this.F2.square(Z); // C = Z1^2
const D = this.F2.add(C, this.F2.add(C,C)); // D = 3 * C
const E = this.F2.mul(this.twist_coeff_b, D); // E = twist_b * D
const F = this.F2.add(E, this.F2.add(E,E)); // F = 3 * E
const G =
this.F2.mulEscalar(
this.F2.add( B , F ),
this.two_inv); // G = (B+F)/2
const H =
this.F2.sub(
this.F2.square( this.F2.add(Y,Z) ),
this.F2.add( B , C)); // H = (Y1+Z1)^2-(B+C)
const I = this.F2.sub(E, B); // I = E-B
const J = this.F2.square(X); // J = X1^2
const E_squared = this.F2.square(E); // E_squared = E^2
current.X = this.F2.mul( A, this.F2.sub(B,F) ); // X3 = A * (B-F)
current.Y =
this.F2.sub(
this.F2.sub( this.F2.square(G) , E_squared ),
this.F2.add( E_squared , E_squared )); // Y3 = G^2 - 3*E^2
current.Z = this.F2.mul( B, H ); // Z3 = B * H
const c = {
ell_0 : this.F2.mul( I, this.twist), // ell_0 = xi * I
ell_VW: this.F2.neg( H ), // ell_VW = - H (later: * yP)
ell_VV: this.F2.add( J , this.F2.add(J,J) ) // ell_VV = 3*J (later: * xP)
};
return c;
}
_addStep(base, current) {
const X1 = current.X;
const Y1 = current.Y;
const Z1 = current.Z;
const x2 = base[0];
const y2 = base[1];
const D = this.F2.sub( X1, this.F2.mul(x2,Z1) ); // D = X1 - X2*Z1
const E = this.F2.sub( Y1, this.F2.mul(y2,Z1) ); // E = Y1 - Y2*Z1
const F = this.F2.square(D); // F = D^2
const G = this.F2.square(E); // G = E^2
const H = this.F2.mul(D,F); // H = D*F
const I = this.F2.mul(X1,F); // I = X1 * F
const J =
this.F2.sub(
this.F2.add( H, this.F2.mul(Z1,G) ),
this.F2.add( I, I )); // J = H + Z1*G - (I+I)
current.X = this.F2.mul( D , J ); // X3 = D*J
current.Y =
this.F2.sub(
this.F2.mul( E , this.F2.sub(I,J) ),
this.F2.mul( H , Y1)); // Y3 = E*(I-J)-(H*Y1)
current.Z = this.F2.mul(Z1,H);
const c = {
ell_0 :
this.F2.mul(
this.twist,
this.F2.sub(
this.F2.mul(E , x2),
this.F2.mul(D , y2))), // ell_0 = xi * (E * X2 - D * Y2)
ell_VV : this.F2.neg(E), // ell_VV = - E (later: * xP)
ell_VW : D // ell_VW = D (later: * yP )
};
return c;
}
_mul_by_024(a, ell_0, ell_VW, ell_VV) {
const b = [
[ell_0, this.F2.zero, ell_VV],
[this.F2.zero, ell_VW, this.F2.zero]
];
return this.F12.mul(a,b);
// TODO There is a better version on libff. It should be ported.
}
_g2MulByQ(p) {
const fmx = [p[0][0], this.F1.mul(p[0][1], this.frobenius_coeffs_c1_1 )];
const fmy = [p[1][0], this.F1.mul(p[1][1], this.frobenius_coeffs_c1_1 )];
const fmz = [p[2][0], this.F1.mul(p[2][1], this.frobenius_coeffs_c1_1 )];
return [
this.F2.mul(this.twist_mul_by_q_X , fmx),
this.F2.mul(this.twist_mul_by_q_Y , fmy),
fmz
];
}
}
module.exports = BN128;

+ 6
- 3
src/constants.js

@ -24,8 +24,10 @@ const C = {
]
],
f2nonResidue: bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582")
f2nonResidue: bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208582"),
f6nonResidue: [ bigInt("9"), bigInt("1") ],
f12nonResidue: [
]
};
const F1 = new F1Field(C.q);
@ -35,7 +37,8 @@ C.two_inv= F1.inverse(bigInt(2));
C.coef_b = bigInt(3);
C.twist = [bigInt(9) , bigInt(1)];
// C.twist_coeff_b = F2.mulEscalar( F2.inverse(C.twist), C.coef_b );
C.twist_coeff_b = F2.mulEscalar( F2.inverse(C.twist), C.coef_b );
module.exports = C;

+ 0
- 55
src/f12field.js

@ -1,55 +0,0 @@
class F12Field {
constructor(p) {
this.p = n;
}
add(a, b) {
const maxGrade = Math.max(a.length, b.length);
const res = new Array(maxGrade);
for (let i=0; i<maxGrade; i++) {
res[i] = this.F.add(a[i], b[i]);
}
return this._reduce(res);
}
sub(a, b) {
// TODO
throw new Error("Not Implementted");
}
neg(a) {
// TODO
throw new Error("Not Implementted");
}
mul(a, b) {
// TODO
throw new Error("Not Implementted");
}
inverse(a, b) {
// TODO
throw new Error("Not Implementted");
}
div(a, b) {
// TODO
throw new Error("Not Implementted");
}
isZero(a) {
// TODO
throw new Error("Not Implementted");
}
mul_by_024(a, ell0, ellVW, ellVV) {
// TODO
throw new Error("Not Implementted");
}
}
module.exports = F2Field;

+ 13
- 4
src/f1field.js

@ -1,4 +1,5 @@
const bigInt = require("big-integer");
const fUtils = require("./futils.js");
class F1Field {
constructor(q) {
@ -8,10 +9,6 @@ class F1Field {
this.one = bigInt.one;
}
e(a) {
return bigInt(a);
}
copy(a) {
return bigInt(a);
}
@ -20,6 +17,10 @@ class F1Field {
return a.add(b);
}
double(a) {
return this.add(a,a);
}
sub(a, b) {
return a.minus(b);
}
@ -69,6 +70,14 @@ class F1Field {
return aux;
}
mulEscalar(base, e) {
return fUtils.mulEscalar(this, base, e);
}
exp(base, e) {
return fUtils.exp(this, base, e);
}
toString(a) {
const ca = this.affine(a);
return `"0x${ca.toString(16)}"`;

+ 19
- 7
src/f2field.js

@ -1,4 +1,4 @@
const bigInt = require("big-integer");
const fUtils = require("./futils.js");
class F2Field {
constructor(F, nonResidue) {
@ -8,8 +8,8 @@ class F2Field {
this.nonResidue = nonResidue;
}
e(c0, c1) {
return [bigInt(c0), bigInt(c1)];
_mulByNonResidue(a) {
return this.F.mul(this.nonResidue, a);
}
copy(a) {
@ -23,6 +23,10 @@ class F2Field {
];
}
double(a) {
return this.add(a,a);
}
sub(a, b) {
return [
this.F.sub(a[0], b[0]),
@ -39,7 +43,7 @@ class F2Field {
const bB = this.F.mul(a[1] , b[1]);
return [
this.F.add( aA , this.F.mul(this.nonResidue , bB)),
this.F.add( aA , this._mulByNonResidue(bB)),
this.F.sub(
this.F.mul(
this.F.add(a[0], a[1]),
@ -50,7 +54,7 @@ class F2Field {
inverse(a) {
const t0 = this.F.square(a[0]);
const t1 = this.F.square(a[1]);
const t2 = this.F.sub(t0, this.F.mul(this.nonResidue, t1));
const t2 = this.F.sub(t0, this._mulByNonResidue(t1));
const t3 = this.F.inverse(t2);
return [
this.F.mul(a[0], t3),
@ -77,10 +81,10 @@ class F2Field {
this.F.add(a[0], a[1]) ,
this.F.add(
a[0] ,
this.F.mul(this.nonResidue , a[1]))),
this._mulByNonResidue(a[1]))),
this.F.add(
ab,
this.F.mul(this.nonResidue, ab))),
this._mulByNonResidue(ab))),
this.F.add(ab, ab)
];
}
@ -97,6 +101,14 @@ class F2Field {
return [this.F.affine(a[0]), this.F.affine(a[1])];
}
mulEscalar(base, e) {
return fUtils.mulEscalar(this, base, e);
}
exp(base, e) {
return fUtils.exp(this, base, e);
}
toString(a) {
const cp = this.affine(a);
return `[ ${this.F.toString(cp[0])} , ${this.F.toString(cp[1])} ]`;

+ 158
- 0
src/f3field.js

@ -0,0 +1,158 @@
const fUtils = require("./futils.js");
class F3Field {
constructor(F, nonResidue) {
this.F = F;
this.zero = [this.F.zero, this.F.zero, this.F.zero];
this.one = [this.F.one, this.F.zero, this.F.zero];
this.nonResidue = nonResidue;
}
_mulByNonResidue(a) {
return this.F.mul(this.nonResidue, a);
}
copy(a) {
return [this.F.copy(a[0]), this.F.copy(a[1]), this.F.copy(a[2])];
}
add(a, b) {
return [
this.F.add(a[0], b[0]),
this.F.add(a[1], b[1]),
this.F.add(a[2], b[2])
];
}
double(a) {
return this.add(a,a);
}
sub(a, b) {
return [
this.F.sub(a[0], b[0]),
this.F.sub(a[1], b[1]),
this.F.sub(a[2], b[2])
];
}
neg(a) {
return this.sub(this.zero, a);
}
mul(a, b) {
const aA = this.F.mul(a[0] , b[0]);
const bB = this.F.mul(a[1] , b[1]);
const cC = this.F.mul(a[2] , b[2]);
return [
this.F.add(
aA,
this._mulByNonResidue(
this.F.sub(
this.F.mul(
this.F.add(a[1], a[2]),
this.F.add(b[1], b[2])),
this.F.add(bB, cC)))), // aA + non_residue*((b+c)*(B+C)-bB-cC),
this.F.add(
this.F.sub(
this.F.mul(
this.F.add(a[0], a[1]),
this.F.add(b[0], b[1])),
this.F.add(aA, bB)),
this._mulByNonResidue( cC)), // (a+b)*(A+B)-aA-bB+non_residue*cC
this.F.add(
this.F.sub(
this.F.mul(
this.F.add(a[0], a[2]),
this.F.add(b[0], b[2])),
this.F.add(aA, cC)),
bB)]; // (a+c)*(A+C)-aA+bB-cC)
}
inverse(a) {
const t0 = this.F.square(a[0]); // t0 = a^2 ;
const t1 = this.F.square(a[1]); // t1 = b^2 ;
const t2 = this.F.square(a[2]); // t2 = c^2;
const t3 = this.F.mul(a[0],a[1]); // t3 = ab
const t4 = this.F.mul(a[0],a[2]); // t4 = ac
const t5 = this.F.mul(a[1],a[2]); // t5 = bc;
// c0 = t0 - non_residue * t5;
const c0 = this.F.sub(t0, this._mulByNonResidue(t5));
// c1 = non_residue * t2 - t3;
const c1 = this.F.sub(this._mulByNonResidue(t2), t3);
const c2 = this.F.sub(t1, t4); // c2 = t1-t4
// t6 = (a * c0 + non_residue * (c * c1 + b * c2)).inverse();
const t6 =
this.F.inverse(
this.F.add(
this.F.mul(a[0], c0),
this._mulByNonResidue(
this.F.add(
this.F.mul(a[2], c1),
this.F.mul(a[1], c2)))));
return [
this.F.mul(t6, c0), // t6*c0
this.F.mul(t6, c1), // t6*c1
this.F.mul(t6, c2)]; // t6*c2
}
div(a, b) {
return this.mul(a, this.inverse(b));
}
square(a) {
const s0 = this.F.square(a[0]); // s0 = a^2
const ab = this.F.mul(a[0], a[1]); // ab = a*b
const s1 = this.F.add(ab, ab); // s1 = 2ab;
const s2 = this.F.square(
this.F.add(this.F.sub(a[0],a[1]), a[2])); // s2 = (a - b + c)^2;
const bc = this.F.mul(a[1],a[2]); // bc = b*c
const s3 = this.F.add(bc, bc); // s3 = 2*bc
const s4 = this.F.square(a[2]); // s4 = c^2
return [
this.F.add(
s0,
this._mulByNonResidue(s3)), // s0 + non_residue * s3,
this.F.add(
s1,
this._mulByNonResidue(s4)), // s1 + non_residue * s4,
this.F.sub(
this.F.add( this.F.add(s1, s2) , s3 ),
this.F.add(s0, s4))]; // s1 + s2 + s3 - s0 - s4
}
isZero(a) {
return this.F.isZero(a[0]) && this.F.isZero(a[1]) && this.F.isZero(a[2]);
}
equals(a, b) {
return this.F.equals(a[0], b[0]) && this.F.equals(a[1], b[1]) && this.F.equals(a[2], b[2]);
}
affine(a) {
return [this.F.affine(a[0]), this.F.affine(a[1]), this.F.affine(a[2])];
}
mulEscalar(base, e) {
return fUtils.mulEscalar(this, base, e);
}
exp(base, e) {
return fUtils.exp(this, base, e);
}
toString(a) {
const cp = this.affine(a);
return `[ ${this.F.toString(cp[0])} , ${this.F.toString(cp[1])}, ${this.F.toString(cp[2])} ]`;
}
}
module.exports = F3Field;

+ 0
- 0
src/f6field.js


+ 34
- 0
src/futils.js

@ -0,0 +1,34 @@
const bigInt = require("big-integer");
exports.mulEscalar = (F, base, e) =>{
let res = F.zero;
let rem = bigInt(e);
let exp = base;
while (! rem.isZero()) {
if (rem.isOdd()) {
res = F.add(res, exp);
}
exp = F.double(exp);
rem = rem.shiftRight(1);
}
return res;
};
exports.exp = (F, base, e) =>{
let res = F.one;
let rem = bigInt(e);
let exp = base;
while (! rem.isZero()) {
if (rem.isOdd()) {
res = F.mul(res, exp);
}
exp = F.square(exp);
rem = rem.shiftRight(1);
}
return res;
};

+ 2
- 13
src/gcurve.js

@ -1,3 +1,4 @@
const fUtils = require("./futils.js");
class GCurve {
@ -105,19 +106,7 @@ class GCurve {
}
mulEscalar(base, e) {
let res = this.zero;
let rem = e;
let exp = base;
while (! rem.isZero()) {
if (rem.isOdd()) {
res = this.add(res, exp);
}
exp = this.double(exp);
rem = rem.shiftRight(1);
}
return res;
return fUtils.mulEscalar(this, base, e);
}
affine(p) {

+ 0
- 20
src/gt.js

@ -1,20 +0,0 @@
const bigInt = require("big-integer");
const ZnField = require("./znfield.js");
module.eports = class Gt {
constructor() {
// TODO
throw new Error("Not Implementted");
}
mul(p1, p2) {
// TODO
throw new Error("Not Implementted");
}
equal(p1, p2) {
// TODO
throw new Error("Not Implementted");
}
};

+ 29
- 19
src/pairing.js

@ -4,11 +4,10 @@ This module calculate the pairing of p1 and p2 where p1 in G1 and p2 in G2
const assert = require("assert");
const bigInt = require("big-integer");
const F1Field = require("f1field");
const F2Field = require("f2field");
const F12Field = require("f12field");
const G1Curve = require("g1curve");
const G2Curve = require("g2curve");
const F1Field = require("./f1field");
const F2Field = require("./f2field");
const F3Field = require("./f3field");
const GCurve = require("./gcurve");
const constants = require("constants");
module.exports = new Pairing();
@ -16,8 +15,8 @@ module.exports = new Pairing();
class Pairing {
constructor() {
this.loopCount = bigInt(11);// CONSTANT
constructor(curve) {
this.loopCount = bigInt("29793968203157093288");// CONSTANT
// Set loopCountNeg
if (this.loopCount.isNegative()) {
@ -30,18 +29,17 @@ class Pairing {
// Set loop_count_bits
let lc = this.loopCount;
this.loop_count_bits = []; // Constant
while (lc) {
while (!lc.isZero()) {
this.loop_count_bits.push( lc.isOdd() );
lc = lc.shiftRight(1);
}
this.F12 = new F12Field(constants.q);
this.F2 = new F2Field(constants.q);
this.F1 = new F1Field(constants.q);
this.G1 = new GCurve(F1, constants.g1);
this.G2 = new GCurve(F2, constants.g2);
this.twoInv = this.F1.inverse(bigInt(2));
this.F1 = curve.F1;
this.F2 = curve.F2;
this.G1 = curve.G1;
this.G2 = curve.G2;
this.F6 = curve.F6;
this.F12 = curve.F12;
}
pairing(p1, p2) {
@ -134,7 +132,7 @@ class Pairing {
c = pre2.coeffs[idx++];
f = this.F12.square(f);
f = this.F12.mul_by_024(
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mul(pre1.PY, c.ell_VW),
@ -143,7 +141,7 @@ class Pairing {
if (bit)
{
c = pre2.coeffs[idx++];
f = this.F12.mul_by_024(
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mul(pre1.PY, c.ell_VW),
@ -158,14 +156,14 @@ class Pairing {
}
c = pre2.coeffs[idx++];
f = this.F12.mul_by_024(
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mul(pre1.PY, c.ell_VW),
this.F2.mul(pre1.PX, c.ell_VV));
c = pre2.coeffs[idx++];
f = this.F12.mul_by_024(
f = this._mul_by_024(
f,
c.ell_0,
this.F2.mul(pre1.PY, c.ell_VW),
@ -250,4 +248,16 @@ class Pairing {
return c;
}
_mul_by_024(a, ell_0, ell_VW, ell_VV) {
const b = [
[ell_0, this.F2.zero, ell_VV],
[this.F2.zero, ell_VW, this.F2.zero]
];
return this.F12.mul(a,b);
// TODO There is a better version on libff. It should be ported.
}
}

+ 109
- 30
test/algebra.js

@ -1,72 +1,151 @@
const bigInt = require("big-integer");
const F1Field = require("../src/f1field.js");
const F2Field = require("../src/f2field.js");
const GCurve = require("../src/gcurve.js");
const constants = require("../src/constants.js");
const chai = require("chai");
const bigInt = require("big-integer");
const BN128 = require("../src/BN128.js");
const assert = chai.assert;
describe("Curve G1 Test", () => {
it ("r*one == 0", () => {
const F1 = new F1Field(constants.q);
const G1 = new GCurve(F1, constants.g1);
it("r*one == 0", () => {
const bn128 = new BN128();
const res = G1.mulEscalar(G1.g, constants.r);
const res = bn128.G1.mulEscalar(bn128.G1.g, bn128.r);
assert(G1.equals(res, G1.zero), "G1 does not have range r");
assert(bn128.G1.equals(res, bn128.G1.zero), "G1 does not have range r");
});
it("Should add match in various in G1", () => {
const F1 = new F1Field(constants.q);
const G1 = new GCurve(F1, constants.g1);
const bn128 = new BN128();
const r1 = bigInt(33);
const r2 = bigInt(44);
const gr1 = G1.mulEscalar(G1.g, r1);
const gr2 = G1.mulEscalar(G1.g, r2);
const gr1 = bn128.G1.mulEscalar(bn128.G1.g, r1);
const gr2 = bn128.G1.mulEscalar(bn128.G1.g, r2);
const grsum1 = G1.add(gr1, gr2);
const grsum1 = bn128.G1.add(gr1, gr2);
const grsum2 = G1.mulEscalar(G1.g, r1.add(r2));
const grsum2 = bn128.G1.mulEscalar(bn128.G1.g, r1.add(r2));
assert(G1.equals(grsum1, grsum2));
assert(bn128.G1.equals(grsum1, grsum2));
});
});
describe("Curve G2 Test", () => {
it ("r*one == 0", () => {
const F1 = new F1Field(constants.q);
const F2 = new F2Field(F1, constants.f2nonResidue);
const G2 = new GCurve(F2, constants.g2);
const bn128 = new BN128();
const res = G2.mulEscalar(G2.g, constants.r);
const res = bn128.G2.mulEscalar(bn128.G2.g, bn128.r);
assert(G2.equals(res, G2.zero), "G2 does not have range r");
assert(bn128.G2.equals(res, bn128.G2.zero), "G2 does not have range r");
});
it("Should add match in various in G2", () => {
const F1 = new F1Field(constants.q);
const F2 = new F2Field(F1, constants.f2nonResidue);
const G2 = new GCurve(F2, constants.g2);
const bn128 = new BN128();
const r1 = bigInt(33);
const r2 = bigInt(44);
const gr1 = G2.mulEscalar(G2.g, r1);
const gr2 = G2.mulEscalar(G2.g, r2);
const gr1 = bn128.G2.mulEscalar(bn128.G2.g, r1);
const gr2 = bn128.G2.mulEscalar(bn128.G2.g, r2);
const grsum1 = G2.add(gr1, gr2);
const grsum1 = bn128.G2.add(gr1, gr2);
const grsum2 = G2.mulEscalar(G2.g, r1.add(r2));
const grsum2 = bn128.G2.mulEscalar(bn128.G2.g, r1.add(r2));
/*
console.log(G2.toString(grsum1));
console.log(G2.toString(grsum2));
*/
assert(G2.equals(grsum1, grsum2));
assert(bn128.G2.equals(grsum1, grsum2));
});
});
describe("F6 testing", () => {
it("Should multiply and divide in F6", () => {
const bn128 = new BN128();
const a =
[
[bigInt("1"), bigInt("2")],
[bigInt("3"), bigInt("4")],
[bigInt("5"), bigInt("6")]
];
const b =
[
[bigInt("12"), bigInt("11")],
[bigInt("10"), bigInt("9")],
[bigInt("8"), bigInt("7")]
];
const c = bn128.F6.mul(a,b);
const d = bn128.F6.div(c,b);
assert(bn128.F6.equals(a, d));
});
});
describe("F12 testing", () => {
it("Should multiply and divide in F12", () => {
const bn128 = new BN128();
const a =
[
[
[bigInt("1"), bigInt("2")],
[bigInt("3"), bigInt("4")],
[bigInt("5"), bigInt("6")]
],
[
[bigInt("7"), bigInt("8")],
[bigInt("9"), bigInt("10")],
[bigInt("11"), bigInt("12")]
]
];
const b =
[
[
[bigInt("12"), bigInt("11")],
[bigInt("10"), bigInt("9")],
[bigInt("8"), bigInt("7")]
],
[
[bigInt("6"), bigInt("5")],
[bigInt("4"), bigInt("3")],
[bigInt("2"), bigInt("1")]
]
];
const c = bn128.F12.mul(a,b);
const d = bn128.F12.div(c,b);
assert(bn128.F12.equals(a, d));
});
});
describe("Pairing", () => {
it("Should match pairing", () => {
const bn128 = new BN128();
const g1a = bn128.G1.mulEscalar(bn128.G1.g, 25);
const g2a = bn128.G2.mulEscalar(bn128.G2.g, 30);
const g1b = bn128.G1.mulEscalar(bn128.G1.g, 30);
const g2b = bn128.G2.mulEscalar(bn128.G2.g, 25);
const pre1a = bn128.precomputeG1(g1a);
const pre2a = bn128.precomputeG2(g2a);
const pre1b = bn128.precomputeG1(g1b);
const pre2b = bn128.precomputeG2(g2b);
const r1 = bn128.millerLoop(pre1a, pre2a);
const r2 = bn128.millerLoop(pre1b, pre2b);
const rbe = bn128.F12.mul(r1, bn128.F12.inverse(r2));
const res = bn128.finalExponentiation(rbe);
assert(bn128.F12.equals(res, bn128.F12.one));
}).timeout(10000);
});

Loading…
Cancel
Save