Browse Source

snarks part done

master
Jordi Baylina 5 years ago
parent
commit
c0312e5d83
No known key found for this signature in database GPG Key ID: 7480C80C1BE43112
9 changed files with 437 additions and 5 deletions
  1. +107
    -0
      README
  2. +3
    -3
      README.md
  3. +20
    -0
      src/gt.js
  4. +2
    -0
      src/pairing.js
  5. +4
    -0
      src/polfield.js
  6. +82
    -1
      src/prover.js
  7. +155
    -0
      src/setup.js
  8. +49
    -1
      src/verifier.js
  9. +15
    -0
      src/znfield.js

+ 107
- 0
README

@ -0,0 +1,107 @@
# javascript implementation of zkSnark
This is a javascript implementation of zkSnarks.
This library allows to do the trusted setup, generate proofs and verify the proofs.
This library uses the compiled circuits generated by the jaz compiler.
## Install
```
npm install zkSnark
```
## Usage
### import
```
const zkSnark = require("zksnark");
```
### Load a circuit.
```
// "myCircuit.cir" is the output of the jaz compiler
const circuitDef = JSON.parse(fs.readFileSync("myCircuit.cir", "utf8"));
const circuit = new zkSnark.Circuit(circuitDef);
```
### Inspect the circuit.
```
// `signalId` can always be a number or an alias string
circuit.m; // number of constrains
circuit.n; // number of signals
circuit.p; // number of public signals (nPublicInputs + nOutputs)
// The array of signals is always sorted in this order:
// [ outputs, publicInputs, privedInputs, internalSignals, constants]
// returns a,b and c coeficients of the `signalId` on a given `constrain`
circuit.a(constrain, signalId)
circuit.b(constrain, signalId)
circuit.c(constrain, signalId)
circuit.nOutputs // number of public outputs
circuit.nPublicInputs // number of public inputs
circuit.nPrivateInputs // number of private inputs
circuit.nInputs // number of inputs ( nPublicInputs + nPrivateInputs)
circuit.outputIdx(i) // returns the index of the i'th output
circuit.inputIdx(i) // returns the index of the i'th input
circuit.inputPublicIdx(i) // returns the index of the i'th public input
circuit.inputPrivateIdx(i) // returns the index of the i'th private input
// returns signal Idx given a signalId
// if the idx >= n , it is a constant
// if the idx == -1, the signal does not exist
circuit.signalId2idx(signalId);
// returns an array aliases names for a given signalId
circuit.signalNames(signalId)
// input is a key value object where keys are the signal names
// of all the inputs (public and private)
// returns an array of values that represent the witness
circuit.generateWitness(input)
```
### Trusted setup
```
const setup = zkSnark.setup(circuit);
fs.writeFileSink("myCircuit.vk_proof", JSON.stringify(setup.vk_proof), "utf8");
fs.writeFileSink("myCircuit.vk_verifier", JSON.stringify(setup.vk_verifier), "utf8");
setup.toxic // Must be discarded.
```
### Generate proof
```
const circuitDef = JSON.parse(fs.readFileSync("myCircuit.cir", "utf8"));
const circuit = new zkSnark.Circuit(circuitDef);
const input = {
"main.pubIn1": "123",
"main.out1": "456"
}
const witness = circuit.generateWitness(input);
const vk_proof = JSON.parse(fs.readFileSync("myCircuit.vk_proof", "utf8"));
const {proof, publicSignals} = zkSnark.genProof(vk_proof, witness);
```
### Verifier
```
const vk_verifier = JSON.parse(fs.readFileSync("myCircuit.vk_verifier", "utf8"));
if (zkSnark.isValid(vk_verifier, proof, publicSignals)) {
console.log("The proof is valid");
} else {
console.log("The proof is not valid");
}
```

+ 3
- 3
README.md

@ -34,9 +34,9 @@ const circuit = new zkSnark.Circuit(circuitDef);
```
// `signalId` can always be a number or an alias string
circuit.m; // number of constrains
circuit.n; // number of signals
circuit.p; // number of public signals (nPublicInputs + nOutputs)
circuit.nConstrains; // number of constrains
circuit.nSignals; // number of signals
circuit.nPublic; // number of public signals (nOutputs + nPublicInputs)
// The array of signals is always sorted in this order:
// [ outputs, publicInputs, privedInputs, internalSignals, constants]

+ 20
- 0
src/gt.js

@ -0,0 +1,20 @@
const bigInt = require("big-integer");
const ZnField = require("./znfield.js");
module.eports = class Gt {
constructor() {
// TODO
throw new Error("Not Implementted");
}
mul(p1, p2) {
// TODO
throw new Error("Not Implementted");
}
equal(p1, p2) {
// TODO
throw new Error("Not Implementted");
}
};

+ 2
- 0
src/pairing.js

@ -5,6 +5,8 @@ This module calculate the pairing of p1 and p2 where p1 in G1 and p2 in G2
const bigInt = require("big-integer");
module.exports = function pairing(p1, p2) {
// TODO
throw new Error("Not Implementted");
};

src/polinomial.js → src/polfield.js

@ -37,6 +37,10 @@ class PolField {
throw new Error("Not Implementted");
}
eval(p, x) {
throw new Error("Not Implementted");
}
lagrange(points) {
throw new Error("Not Implementted");
}

+ 82
- 1
src/prover.js

@ -1,5 +1,86 @@
const bigInt = require("big-integer");
const ZnField = require("./znfield.js");
const G1Curve = require("./g1curve");
const G2Curve = require("./g2curve");
const PolField = require("./polfield.js");
const F = new ZnField(bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617"));
const G1 = new G1Curve();
const G2 = new G2Curve();
const PolF = new PolField(F);
module.exports = function genProof(vk_proof, witness) {
}
const proof = {};
proof.pi_a = G1.zero();
proof.pi_ap = G1.zero();
proof.pi_b = G2.zero();
proof.pi_bp = G2.zero();
proof.pi_c = G1.zero();
proof.pi_cp = G1.zero();
proof.pi_kp = G1.zero();
proof.pi_h = G1.zero();
for (let s= vk_proof.nPublic; s< vk_proof.nSignals; s++) {
// pi_a = pi_a + A[s] * witness[s];
proof.pi_a = G1.add( proof.pi_a, G1.mulEscalar( vk_proof.A[s], witness[s]));
// pi_ap = pi_ap + Ap[s] * witness[s];
proof.pi_ap = G1.add( proof.pi_ap, G1.mulEscalar( vk_proof.Ap[s], witness[s]));
}
for (let s= 0; s< vk_proof.nSignals; s++) {
// pi_a = pi_a + A[s] * witness[s];
proof.pi_b = G2.add( proof.pi_b, G1.mulEscalar( vk_proof.B[s], witness[s]));
// pi_ap = pi_ap + Ap[s] * witness[s];
proof.pi_bp = G1.add( proof.pi_bp, G1.mulEscalar( vk_proof.Bp[s], witness[s]));
// pi_a = pi_a + A[s] * witness[s];
proof.pi_c = G1.add( proof.pi_c, G1.mulEscalar( vk_proof.C[s], witness[s]));
// pi_ap = pi_ap + Ap[s] * witness[s];
proof.pi_cp = G1.add( proof.pi_cp, G1.mulEscalar( vk_proof.Cp[s], witness[s]));
// pi_ap = pi_ap + Ap[s] * witness[s];
proof.pi_kp = G1.add( proof.pi_kp, G1.mulEscalar( vk_proof.Kp[s], witness[s]));
}
let polA = [];
let polB = [];
let polC = [];
for (let s= 0; s< vk_proof.nSignals; s++) {
polA = PolF.add(
polA,
PolF.mul(
vk_proof.polsA[s],
[witness[s]] ));
polB = PolF.add(
polB,
PolF.mul(
vk_proof.polsB[s],
[witness[s]] ));
polC = PolF.add(
polC,
PolF.mul(
vk_proof.polsC[s],
[witness[s]] ));
}
let polFull = PolF.sub(PolF.mul( polA, polB), polC);
const h = PolF.div(polFull, vk_proof.polZ );
for (let i = 0; i < h.length; i++) {
proof.pi_h = G1.add( proof.pi_h, G1.mulEscalar( vk_proof.hExps[i], h[i]));
}
};

+ 155
- 0
src/setup.js

@ -1,5 +1,160 @@
const bigInt = require("big-integer");
const ZnField = require("./znfield.js");
const PolField = require("./polfield.js");
const G1Curve = require("./g1curve");
const G2Curve = require("./g2curve");
const F = new ZnField(bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617"));
const PolF = new PolField(F);
const G1 = new G1Curve();
const G2 = new G2Curve();
module.exports = function setup(circuit) {
const setup = {
vk_proof : {
nSignals: circuit.nSignals,
nPublic: circuit.nPublic
},
vk_verifier: {
nPublic: circuit.nPublic
},
toxic: {}
};
calculatePolinomials(setup, circuit);
setup.toxic.t = F.random();
calculateEncriptedValuesAtT(setup, circuit);
calculateHexps(setup, circuit);
};
function calculatePolinomials(setup, circuit) {
// Calculate the points that must cross each polinomial
const aPoints = [];
const bPoints = [];
const cPoints = [];
for (let s = 0; circuit.nSignals; s++) {
aPoints[s] = [];
bPoints[s] = [];
cPoints[s] = [];
for (let c=0; c<circuit.nConstrains; c++) {
aPoints[s].push([bigInt(c), circuit.a(c, s)]);
bPoints[s].push([bigInt(c), circuit.b(c, s)]);
cPoints[s].push([bigInt(c), circuit.c(c, s)]);
}
}
// Calculate the polinomials using Lagrange
setup.vk_proof.polsA = [];
setup.vk_proof.polsB = [];
setup.vk_proof.polsC = [];
for (let s=0; s<circuit.nSignals; s++) {
setup.vk_proof.polsA.push(PolF.lagrange( aPoints[s] ));
setup.vk_proof.polsB.push(PolF.lagrange( bPoints[s] ));
setup.vk_proof.polsC.push(PolF.lagrange( cPoints[s] ));
}
// Calculate Z polinomial
// Z = 1
setup.vk_proof.polZ = [bigInt(1)];
for (let c=0; c<circuit.nConstrains; c++) {
// Z = Z * (x - p_c)
setup.vk_proof.polZ = PolF.mul(
setup.vk_proof.polZ,
[F.neg(bigInt(c)), bigInt(1)] );
}
}
function calculateEncriptedValuesAtT(setup, circuit) {
setup.vk_proof.A = [];
setup.vk_proof.B = [];
setup.vk_proof.C = [];
setup.vk_proof.Ap = [];
setup.vk_proof.Bp = [];
setup.vk_proof.Cp = [];
setup.vk_proof.Kp = [];
setup.vk_verifier.A = [];
setup.toxic.ka = F.random();
setup.toxic.kb = F.random();
setup.toxic.kc = F.random();
setup.toxic.kbeta = F.random();
setup.toxic.kgamma = F.random();
const gb = F.mul(setup.toxic.kbeta, setup.toxic.kgamma);
setup.vk_verifier.vk_a = G2.mulEscalar( G2.g, setup.toxic.ka);
setup.vk_verifier.vk_b = G1.mulEscalar( G1.g, setup.toxic.kb);
setup.vk_verifier.vk_c = G2.mulEscalar( G2.g, setup.toxic.kc);
setup.vk_verifier.vk_gb_1 = G1.mulEscalar( G1.g, gb);
setup.vk_verifier.vk_gb_2 = G2.mulEscalar( G2.g, gb);
setup.vk_verifier.vk_g = G2.mulEscalar( G2.g, setup.toxic.kgamma);
for (let s=0; s<circuit.nSignals; s++) {
// A[i] = G1 * polA(t)
const A = G1.mulEscalar(
G1.g,
PolF.eval(setup.vk_proof.polsA[s], setup.vk_proof.t));
setup.vk_proof.A.push(A);
if (s < circuit.nPublicSignals) {
setup.vk_verifier.A.pusj(A);
}
// B1[i] = G1 * polB(t)
const B1 = G1.mulEscalar(
G1.g,
PolF.eval(setup.vk_proof.polsB[s], setup.vk_proof.t));
// B2[i] = G2 * polB(t)
const B2 = G2.mulEscalar(
G2.g,
PolF.eval(setup.vk_proof.polsB[s], setup.vk_proof.t));
setup.vk_proof.B.push(B2);
// C[i] = G1 * polC(t)
const C = G1.mulEscalar(
G1.g,
PolF.eval(setup.vk_proof.polsC[s], setup.vk_proof.t));
setup.vk_proof.C.push (C);
// K = G1 * (A+B+C)
const K = G1.mulEscalar(
G1.g,
G1.add(G1.add(A, B1), C));
setup.vk_proof.Ap.push(G1.mulEscalar(A, setup.toxic.ka));
setup.vk_proof.Bp.push(G1.mulEscalar(B1, setup.toxic.kb));
setup.vk_proof.Cp.push(G1.mulEscalar(C, setup.toxic.kc));
setup.vk_proof.Kp.push(G1.mulEscalar(K, setup.toxic.beta));
}
setup.vk_verifier.vk_z = G2.mulEscalar(
G2.g,
PolF.eval(setup.vk_proof.polZ, setup.vk_proof.t));
}
function calculateHexps(setup, circuit) {
let maxA = 0;
let maxB = 0;
let maxC = 0;
for (let s=0; s<circuit.nSignals; s++) {
maxA = Math.max(maxA, setup.vk_proof.polsA[s]);
maxB = Math.max(maxB, setup.vk_proof.polsB[s]);
maxC = Math.max(maxC, setup.vk_proof.polsC[s]);
}
let maxFull = Math.max(maxA * maxB - 1, maxC);
const maxH = maxFull - setup.vk_proof.polZ.length + 1;
setup.vk_proof.hExps = new Array(maxH);
setup.vk_proof.hExps[0] = G1.g;
let eT = setup.toxic.t;
for (let i=1; i<maxH; i++) {
setup.vk_proof.hExps[i] = G1.mulEscalar(G1.g, eT);
eT = F.mul(eT, setup.toxic.t);
}
}

+ 49
- 1
src/verifier.js

@ -1,4 +1,52 @@
const G1Curve = require("./g1curve");
const G2Curve = require("./g2curve");
const GT = require("./gt");
const G1 = new G1Curve();
const G2 = new G2Curve();
const Gt = new GT();
const pairing = require("./pairing");
module.exports = function isValid(vk_verifier, proof, publicSignals) {
}
let full_pi_a = proof.pi_a;
for (let s= 0; s< vk_verifier.nPublic; s++) {
full_pi_a = G1.add( full_pi_a, G1.mulEscalar( vk_verifier.A[s], publicSignals[s]));
}
if (! Gt.equal(
pairing( proof.pi_a , vk_verifier.vk_a ),
pairing( proof.pi_ap , G2.g )))
return false;
if (! Gt.equal(
pairing( vk_verifier.vk_b, proof.pi_b ),
pairing( proof.pi_ap , G2.g )))
return false;
if (! Gt.equal(
pairing( proof.pi_c , vk_verifier.vk_c ),
pairing( proof.pi_cp , G2.g )))
return false;
if (! Gt.equal(
pairing( full_pi_a , proof.pi_b ),
Gt.mul(
pairing( proof.pi_h , vk_verifier.vk_z ),
pairing( proof.pi_b , G2.g ),
),
pairing( proof.pi_kp , vk_verifier.vk_g )))
return false;
if (! Gt.equal(
Gt.mul(
pairing( G1.add(full_pi_a, proof.pi_c) , vk_verifier.vk_gb_2 ),
pairing( vk_verifier.vk_gb_1 , proof.pi_b ),
),
pairing( proof.pi_kp , vk_verifier.vk_g )))
return false;
return true;
};

+ 15
- 0
src/znfield.js

@ -19,6 +19,11 @@ class ZnField {
throw new Error("Not Implementted");
}
neg(a) {
// TODO
throw new Error("Not Implementted");
}
mul(a, b) {
// TODO
throw new Error("Not Implementted");
@ -34,6 +39,16 @@ class ZnField {
throw new Error("Not Implementted");
}
isZero(a) {
// TODO
throw new Error("Not Implementted");
}
random() {
// TODO
throw new Error("Not Implementted");
}
}
module.exports = ZnField;

Loading…
Cancel
Save