@ -0,0 +1,107 @@ |
|||
# javascript implementation of zkSnark |
|||
|
|||
This is a javascript implementation of zkSnarks. |
|||
|
|||
This library allows to do the trusted setup, generate proofs and verify the proofs. |
|||
|
|||
This library uses the compiled circuits generated by the jaz compiler. |
|||
|
|||
## Install |
|||
|
|||
``` |
|||
npm install zkSnark |
|||
``` |
|||
|
|||
## Usage |
|||
|
|||
### import |
|||
|
|||
``` |
|||
const zkSnark = require("zksnark"); |
|||
``` |
|||
|
|||
### Load a circuit. |
|||
|
|||
``` |
|||
// "myCircuit.cir" is the output of the jaz compiler |
|||
|
|||
const circuitDef = JSON.parse(fs.readFileSync("myCircuit.cir", "utf8")); |
|||
const circuit = new zkSnark.Circuit(circuitDef); |
|||
``` |
|||
|
|||
### Inspect the circuit. |
|||
|
|||
``` |
|||
// `signalId` can always be a number or an alias string |
|||
|
|||
circuit.m; // number of constrains |
|||
circuit.n; // number of signals |
|||
circuit.p; // number of public signals (nPublicInputs + nOutputs) |
|||
|
|||
// The array of signals is always sorted in this order: |
|||
// [ outputs, publicInputs, privedInputs, internalSignals, constants] |
|||
|
|||
// returns a,b and c coeficients of the `signalId` on a given `constrain` |
|||
circuit.a(constrain, signalId) |
|||
circuit.b(constrain, signalId) |
|||
circuit.c(constrain, signalId) |
|||
|
|||
circuit.nOutputs // number of public outputs |
|||
circuit.nPublicInputs // number of public inputs |
|||
circuit.nPrivateInputs // number of private inputs |
|||
circuit.nInputs // number of inputs ( nPublicInputs + nPrivateInputs) |
|||
|
|||
circuit.outputIdx(i) // returns the index of the i'th output |
|||
circuit.inputIdx(i) // returns the index of the i'th input |
|||
circuit.inputPublicIdx(i) // returns the index of the i'th public input |
|||
circuit.inputPrivateIdx(i) // returns the index of the i'th private input |
|||
|
|||
// returns signal Idx given a signalId |
|||
// if the idx >= n , it is a constant |
|||
// if the idx == -1, the signal does not exist |
|||
circuit.signalId2idx(signalId); |
|||
|
|||
// returns an array aliases names for a given signalId |
|||
circuit.signalNames(signalId) |
|||
|
|||
// input is a key value object where keys are the signal names |
|||
// of all the inputs (public and private) |
|||
// returns an array of values that represent the witness |
|||
circuit.generateWitness(input) |
|||
``` |
|||
|
|||
### Trusted setup |
|||
|
|||
``` |
|||
const setup = zkSnark.setup(circuit); |
|||
fs.writeFileSink("myCircuit.vk_proof", JSON.stringify(setup.vk_proof), "utf8"); |
|||
fs.writeFileSink("myCircuit.vk_verifier", JSON.stringify(setup.vk_verifier), "utf8"); |
|||
setup.toxic // Must be discarded. |
|||
``` |
|||
|
|||
### Generate proof |
|||
|
|||
``` |
|||
const circuitDef = JSON.parse(fs.readFileSync("myCircuit.cir", "utf8")); |
|||
const circuit = new zkSnark.Circuit(circuitDef); |
|||
const input = { |
|||
"main.pubIn1": "123", |
|||
"main.out1": "456" |
|||
} |
|||
const witness = circuit.generateWitness(input); |
|||
const vk_proof = JSON.parse(fs.readFileSync("myCircuit.vk_proof", "utf8")); |
|||
|
|||
const {proof, publicSignals} = zkSnark.genProof(vk_proof, witness); |
|||
``` |
|||
|
|||
### Verifier |
|||
|
|||
``` |
|||
const vk_verifier = JSON.parse(fs.readFileSync("myCircuit.vk_verifier", "utf8")); |
|||
|
|||
if (zkSnark.isValid(vk_verifier, proof, publicSignals)) { |
|||
console.log("The proof is valid"); |
|||
} else { |
|||
console.log("The proof is not valid"); |
|||
} |
|||
``` |
@ -0,0 +1,20 @@ |
|||
const bigInt = require("big-integer"); |
|||
const ZnField = require("./znfield.js"); |
|||
|
|||
module.eports = class Gt { |
|||
|
|||
constructor() { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
mul(p1, p2) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
|
|||
equal(p1, p2) { |
|||
// TODO
|
|||
throw new Error("Not Implementted"); |
|||
} |
|||
}; |
@ -1,5 +1,86 @@ |
|||
const bigInt = require("big-integer"); |
|||
|
|||
const ZnField = require("./znfield.js"); |
|||
const G1Curve = require("./g1curve"); |
|||
const G2Curve = require("./g2curve"); |
|||
const PolField = require("./polfield.js"); |
|||
|
|||
const F = new ZnField(bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617")); |
|||
const G1 = new G1Curve(); |
|||
const G2 = new G2Curve(); |
|||
const PolF = new PolField(F); |
|||
|
|||
|
|||
module.exports = function genProof(vk_proof, witness) { |
|||
|
|||
} |
|||
const proof = {}; |
|||
|
|||
proof.pi_a = G1.zero(); |
|||
proof.pi_ap = G1.zero(); |
|||
proof.pi_b = G2.zero(); |
|||
proof.pi_bp = G2.zero(); |
|||
proof.pi_c = G1.zero(); |
|||
proof.pi_cp = G1.zero(); |
|||
proof.pi_kp = G1.zero(); |
|||
proof.pi_h = G1.zero(); |
|||
|
|||
|
|||
for (let s= vk_proof.nPublic; s< vk_proof.nSignals; s++) { |
|||
|
|||
// pi_a = pi_a + A[s] * witness[s];
|
|||
proof.pi_a = G1.add( proof.pi_a, G1.mulEscalar( vk_proof.A[s], witness[s])); |
|||
|
|||
// pi_ap = pi_ap + Ap[s] * witness[s];
|
|||
proof.pi_ap = G1.add( proof.pi_ap, G1.mulEscalar( vk_proof.Ap[s], witness[s])); |
|||
} |
|||
|
|||
for (let s= 0; s< vk_proof.nSignals; s++) { |
|||
// pi_a = pi_a + A[s] * witness[s];
|
|||
proof.pi_b = G2.add( proof.pi_b, G1.mulEscalar( vk_proof.B[s], witness[s])); |
|||
|
|||
// pi_ap = pi_ap + Ap[s] * witness[s];
|
|||
proof.pi_bp = G1.add( proof.pi_bp, G1.mulEscalar( vk_proof.Bp[s], witness[s])); |
|||
|
|||
// pi_a = pi_a + A[s] * witness[s];
|
|||
proof.pi_c = G1.add( proof.pi_c, G1.mulEscalar( vk_proof.C[s], witness[s])); |
|||
|
|||
// pi_ap = pi_ap + Ap[s] * witness[s];
|
|||
proof.pi_cp = G1.add( proof.pi_cp, G1.mulEscalar( vk_proof.Cp[s], witness[s])); |
|||
|
|||
// pi_ap = pi_ap + Ap[s] * witness[s];
|
|||
proof.pi_kp = G1.add( proof.pi_kp, G1.mulEscalar( vk_proof.Kp[s], witness[s])); |
|||
} |
|||
|
|||
let polA = []; |
|||
let polB = []; |
|||
let polC = []; |
|||
|
|||
for (let s= 0; s< vk_proof.nSignals; s++) { |
|||
polA = PolF.add( |
|||
polA, |
|||
PolF.mul( |
|||
vk_proof.polsA[s], |
|||
[witness[s]] )); |
|||
|
|||
polB = PolF.add( |
|||
polB, |
|||
PolF.mul( |
|||
vk_proof.polsB[s], |
|||
[witness[s]] )); |
|||
|
|||
polC = PolF.add( |
|||
polC, |
|||
PolF.mul( |
|||
vk_proof.polsC[s], |
|||
[witness[s]] )); |
|||
} |
|||
|
|||
let polFull = PolF.sub(PolF.mul( polA, polB), polC); |
|||
|
|||
const h = PolF.div(polFull, vk_proof.polZ ); |
|||
|
|||
for (let i = 0; i < h.length; i++) { |
|||
proof.pi_h = G1.add( proof.pi_h, G1.mulEscalar( vk_proof.hExps[i], h[i])); |
|||
} |
|||
|
|||
}; |
@ -1,5 +1,160 @@ |
|||
const bigInt = require("big-integer"); |
|||
|
|||
const ZnField = require("./znfield.js"); |
|||
const PolField = require("./polfield.js"); |
|||
const G1Curve = require("./g1curve"); |
|||
const G2Curve = require("./g2curve"); |
|||
|
|||
const F = new ZnField(bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617")); |
|||
const PolF = new PolField(F); |
|||
const G1 = new G1Curve(); |
|||
const G2 = new G2Curve(); |
|||
|
|||
module.exports = function setup(circuit) { |
|||
const setup = { |
|||
vk_proof : { |
|||
nSignals: circuit.nSignals, |
|||
nPublic: circuit.nPublic |
|||
}, |
|||
vk_verifier: { |
|||
nPublic: circuit.nPublic |
|||
}, |
|||
toxic: {} |
|||
}; |
|||
|
|||
calculatePolinomials(setup, circuit); |
|||
setup.toxic.t = F.random(); |
|||
calculateEncriptedValuesAtT(setup, circuit); |
|||
calculateHexps(setup, circuit); |
|||
}; |
|||
|
|||
function calculatePolinomials(setup, circuit) { |
|||
// Calculate the points that must cross each polinomial
|
|||
const aPoints = []; |
|||
const bPoints = []; |
|||
const cPoints = []; |
|||
for (let s = 0; circuit.nSignals; s++) { |
|||
aPoints[s] = []; |
|||
bPoints[s] = []; |
|||
cPoints[s] = []; |
|||
for (let c=0; c<circuit.nConstrains; c++) { |
|||
aPoints[s].push([bigInt(c), circuit.a(c, s)]); |
|||
bPoints[s].push([bigInt(c), circuit.b(c, s)]); |
|||
cPoints[s].push([bigInt(c), circuit.c(c, s)]); |
|||
} |
|||
} |
|||
|
|||
// Calculate the polinomials using Lagrange
|
|||
setup.vk_proof.polsA = []; |
|||
setup.vk_proof.polsB = []; |
|||
setup.vk_proof.polsC = []; |
|||
for (let s=0; s<circuit.nSignals; s++) { |
|||
setup.vk_proof.polsA.push(PolF.lagrange( aPoints[s] )); |
|||
setup.vk_proof.polsB.push(PolF.lagrange( bPoints[s] )); |
|||
setup.vk_proof.polsC.push(PolF.lagrange( cPoints[s] )); |
|||
} |
|||
|
|||
// Calculate Z polinomial
|
|||
// Z = 1
|
|||
setup.vk_proof.polZ = [bigInt(1)]; |
|||
for (let c=0; c<circuit.nConstrains; c++) { |
|||
// Z = Z * (x - p_c)
|
|||
setup.vk_proof.polZ = PolF.mul( |
|||
setup.vk_proof.polZ, |
|||
[F.neg(bigInt(c)), bigInt(1)] ); |
|||
} |
|||
} |
|||
|
|||
function calculateEncriptedValuesAtT(setup, circuit) { |
|||
setup.vk_proof.A = []; |
|||
setup.vk_proof.B = []; |
|||
setup.vk_proof.C = []; |
|||
setup.vk_proof.Ap = []; |
|||
setup.vk_proof.Bp = []; |
|||
setup.vk_proof.Cp = []; |
|||
setup.vk_proof.Kp = []; |
|||
setup.vk_verifier.A = []; |
|||
|
|||
setup.toxic.ka = F.random(); |
|||
setup.toxic.kb = F.random(); |
|||
setup.toxic.kc = F.random(); |
|||
setup.toxic.kbeta = F.random(); |
|||
setup.toxic.kgamma = F.random(); |
|||
|
|||
const gb = F.mul(setup.toxic.kbeta, setup.toxic.kgamma); |
|||
|
|||
setup.vk_verifier.vk_a = G2.mulEscalar( G2.g, setup.toxic.ka); |
|||
setup.vk_verifier.vk_b = G1.mulEscalar( G1.g, setup.toxic.kb); |
|||
setup.vk_verifier.vk_c = G2.mulEscalar( G2.g, setup.toxic.kc); |
|||
setup.vk_verifier.vk_gb_1 = G1.mulEscalar( G1.g, gb); |
|||
setup.vk_verifier.vk_gb_2 = G2.mulEscalar( G2.g, gb); |
|||
setup.vk_verifier.vk_g = G2.mulEscalar( G2.g, setup.toxic.kgamma); |
|||
|
|||
for (let s=0; s<circuit.nSignals; s++) { |
|||
|
|||
// A[i] = G1 * polA(t)
|
|||
const A = G1.mulEscalar( |
|||
G1.g, |
|||
PolF.eval(setup.vk_proof.polsA[s], setup.vk_proof.t)); |
|||
setup.vk_proof.A.push(A); |
|||
|
|||
if (s < circuit.nPublicSignals) { |
|||
setup.vk_verifier.A.pusj(A); |
|||
} |
|||
|
|||
// B1[i] = G1 * polB(t)
|
|||
const B1 = G1.mulEscalar( |
|||
G1.g, |
|||
PolF.eval(setup.vk_proof.polsB[s], setup.vk_proof.t)); |
|||
|
|||
// B2[i] = G2 * polB(t)
|
|||
const B2 = G2.mulEscalar( |
|||
G2.g, |
|||
PolF.eval(setup.vk_proof.polsB[s], setup.vk_proof.t)); |
|||
setup.vk_proof.B.push(B2); |
|||
|
|||
// C[i] = G1 * polC(t)
|
|||
const C = G1.mulEscalar( |
|||
G1.g, |
|||
PolF.eval(setup.vk_proof.polsC[s], setup.vk_proof.t)); |
|||
setup.vk_proof.C.push (C); |
|||
|
|||
// K = G1 * (A+B+C)
|
|||
const K = G1.mulEscalar( |
|||
G1.g, |
|||
G1.add(G1.add(A, B1), C)); |
|||
|
|||
setup.vk_proof.Ap.push(G1.mulEscalar(A, setup.toxic.ka)); |
|||
setup.vk_proof.Bp.push(G1.mulEscalar(B1, setup.toxic.kb)); |
|||
setup.vk_proof.Cp.push(G1.mulEscalar(C, setup.toxic.kc)); |
|||
setup.vk_proof.Kp.push(G1.mulEscalar(K, setup.toxic.beta)); |
|||
} |
|||
|
|||
setup.vk_verifier.vk_z = G2.mulEscalar( |
|||
G2.g, |
|||
PolF.eval(setup.vk_proof.polZ, setup.vk_proof.t)); |
|||
} |
|||
|
|||
function calculateHexps(setup, circuit) { |
|||
let maxA = 0; |
|||
let maxB = 0; |
|||
let maxC = 0; |
|||
for (let s=0; s<circuit.nSignals; s++) { |
|||
maxA = Math.max(maxA, setup.vk_proof.polsA[s]); |
|||
maxB = Math.max(maxB, setup.vk_proof.polsB[s]); |
|||
maxC = Math.max(maxC, setup.vk_proof.polsC[s]); |
|||
} |
|||
|
|||
let maxFull = Math.max(maxA * maxB - 1, maxC); |
|||
|
|||
const maxH = maxFull - setup.vk_proof.polZ.length + 1; |
|||
|
|||
setup.vk_proof.hExps = new Array(maxH); |
|||
setup.vk_proof.hExps[0] = G1.g; |
|||
let eT = setup.toxic.t; |
|||
for (let i=1; i<maxH; i++) { |
|||
setup.vk_proof.hExps[i] = G1.mulEscalar(G1.g, eT); |
|||
eT = F.mul(eT, setup.toxic.t); |
|||
} |
|||
} |
|||
|
@ -1,4 +1,52 @@ |
|||
const G1Curve = require("./g1curve"); |
|||
const G2Curve = require("./g2curve"); |
|||
const GT = require("./gt"); |
|||
|
|||
const G1 = new G1Curve(); |
|||
const G2 = new G2Curve(); |
|||
const Gt = new GT(); |
|||
|
|||
const pairing = require("./pairing"); |
|||
|
|||
module.exports = function isValid(vk_verifier, proof, publicSignals) { |
|||
|
|||
} |
|||
let full_pi_a = proof.pi_a; |
|||
for (let s= 0; s< vk_verifier.nPublic; s++) { |
|||
|
|||
full_pi_a = G1.add( full_pi_a, G1.mulEscalar( vk_verifier.A[s], publicSignals[s])); |
|||
} |
|||
|
|||
if (! Gt.equal( |
|||
pairing( proof.pi_a , vk_verifier.vk_a ), |
|||
pairing( proof.pi_ap , G2.g ))) |
|||
return false; |
|||
|
|||
if (! Gt.equal( |
|||
pairing( vk_verifier.vk_b, proof.pi_b ), |
|||
pairing( proof.pi_ap , G2.g ))) |
|||
return false; |
|||
|
|||
if (! Gt.equal( |
|||
pairing( proof.pi_c , vk_verifier.vk_c ), |
|||
pairing( proof.pi_cp , G2.g ))) |
|||
return false; |
|||
|
|||
if (! Gt.equal( |
|||
pairing( full_pi_a , proof.pi_b ), |
|||
Gt.mul( |
|||
pairing( proof.pi_h , vk_verifier.vk_z ), |
|||
pairing( proof.pi_b , G2.g ), |
|||
), |
|||
pairing( proof.pi_kp , vk_verifier.vk_g ))) |
|||
return false; |
|||
|
|||
if (! Gt.equal( |
|||
Gt.mul( |
|||
pairing( G1.add(full_pi_a, proof.pi_c) , vk_verifier.vk_gb_2 ), |
|||
pairing( vk_verifier.vk_gb_1 , proof.pi_b ), |
|||
), |
|||
pairing( proof.pi_kp , vk_verifier.vk_g ))) |
|||
return false; |
|||
|
|||
return true; |
|||
}; |