mirror of
https://github.com/arnaucube/sonobe-docs.git
synced 2026-02-10 05:06:45 +01:00
add circom frontend example, in arkworks frontend replace the 'private' inputs example by the external inputs example
This commit is contained in:
@@ -5,6 +5,8 @@
|
||||
|
||||
- [Usage](usage/overview.md)
|
||||
- [Frontend](usage/frontend.md)
|
||||
- [Arkworks](usage/frontend-arkworks.md)
|
||||
- [Circom](usage/frontend-circom.md)
|
||||
- [Fold](usage/fold.md)
|
||||
- [Decider prove](usage/decider-prove.md)
|
||||
- [Decider verify](usage/decider-verify.md)
|
||||
|
||||
243
src/usage/frontend-arkworks.md
Normal file
243
src/usage/frontend-arkworks.md
Normal file
@@ -0,0 +1,243 @@
|
||||
# Arkworks frontend
|
||||
|
||||
Let's walk through different simple examples implementing the `FCircuit` trait. By the end of this section, you will hopefully be familiar with how to integrate an `arkworks` circuit into sonobe.
|
||||
|
||||
You can find most of the following examples with the rest of code to run them at the [`examples`](https://github.com/privacy-scaling-explorations/sonobe/tree/main/examples) directory of the Sonobe repo.
|
||||
|
||||
## Cubic circuit
|
||||
This first example implements the `FCircuit` trait for the R1CS example circuit from [Vitalik's post](https://www.vitalik.ca/general/2016/12/10/qap.html), which checks $x^3 + x + 5 == y$.
|
||||
|
||||
$z_i$ is used as $x$, and $z_{i+1}$ is used as $y$, and at the next step, $z_{i+1}$ will be assigned to $z_i$, and a new $z_{i+1}$ will be computted.
|
||||
|
||||
```rust
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CubicFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for CubicFCircuit<F> {
|
||||
type Params = ();
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
|
||||
}
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
|
||||
let z_i = z_i[0].clone();
|
||||
|
||||
Ok(vec![&z_i * &z_i * &z_i + &z_i + &five])
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Folding a simple circuit
|
||||
|
||||
The circuit we will fold has a state of 5 public elements. At each step, we will want the circuit to compute the next state by:
|
||||
|
||||
1. adding 4 to the first element
|
||||
2. adding 40 to the second element
|
||||
3. multiplying the third element by 4
|
||||
4. multiplying the fourth element by 40
|
||||
5. adding 100 to the fifth element
|
||||
|
||||
Let's implement this now:
|
||||
|
||||
```rust
|
||||
// Define a struct that will be our circuit. This struct will implement the FCircuit trait.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MultiInputsFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
|
||||
// Implement the FCircuit trait for the struct
|
||||
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
|
||||
fn state_len(&self) -> usize {
|
||||
5 // This circuit has 5 inputs
|
||||
}
|
||||
|
||||
// Computes the next state values in place, assigning z_{i+1} into z_i, and computing the new z_{i+1}
|
||||
// We want the `step_native` method to implement the same logic as the `generate_step_constraints` method
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let a = z_i[0] + F::from(4_u32);
|
||||
let b = z_i[1] + F::from(40_u32);
|
||||
let c = z_i[2] * F::from(4_u32);
|
||||
let d = z_i[3] * F::from(40_u32);
|
||||
let e = z_i[4] + F::from(100_u32);
|
||||
|
||||
Ok(vec![a, b, c, d, e]) // The length of the returned vector should match `state_len`
|
||||
}
|
||||
|
||||
/// Generates R1CS constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
// Implementing the circuit constraints
|
||||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
||||
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
||||
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
||||
let a = z_i[0].clone() + four.clone();
|
||||
let b = z_i[1].clone() + forty.clone();
|
||||
let c = z_i[2].clone() * four;
|
||||
let d = z_i[3].clone() * forty;
|
||||
let e = z_i[4].clone() + onehundred;
|
||||
|
||||
Ok(vec![a, b, c, d, e]) // The length of the returned vector should match `state_len`
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Folding a `Sha256` circuit
|
||||
|
||||
We will fold a simple `Sha256` circuit. The circuit has a state of 1 public element. At each step, we will want the circuit to compute the next state by applying the `Sha256` function to the current state.
|
||||
|
||||
Note that the logic here is also very similar to the previous example: write a struct that will hold the circuit, implement the `FCircuit` trait for the struct, ensure that the length of the state is correct, and implement the `step_native` and `generate_step_constraints` methods.
|
||||
|
||||
Note: to simplify things for the example, only the first byte outputted by the sha256 is used for the next state $z_{i+1}$.
|
||||
|
||||
```rust
|
||||
// Define a struct that will be our circuit. This struct will implement the FCircuit trait.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Sha256FCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// Computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
||||
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
||||
|
||||
Ok(vec![out[0]])
|
||||
}
|
||||
|
||||
/// Generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
_cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let unit_var = UnitVar::default();
|
||||
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
|
||||
let out = out_bytes.0.to_constraint_field()?;
|
||||
Ok(vec![out[0].clone()])
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Using external inputs
|
||||
|
||||
In this example we set the state to be the previous state together with an external input, and the new state is an array which contains the new state and a zero which will be ignored.
|
||||
|
||||
This is useful for example if we want to fold multiple verifications of signatures, where the circuit F checks the signature and is folded for each of the signatures and public keys. To keep things simpler, the following example does not verify signatures but does a similar approach with a chain of hashes, where each iteration hashes the previous step output ($z_i$) together with an external input ($w_i$).
|
||||
|
||||
```
|
||||
w_1 w_2 w_3 w_4
|
||||
│ │ │ │
|
||||
▼ ▼ ▼ ▼
|
||||
┌─┐ ┌─┐ ┌─┐ ┌─┐
|
||||
─────►│F├────►│F├────►│F├────►│F├────►
|
||||
z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
|
||||
|
||||
|
||||
where each F is:
|
||||
w_i
|
||||
│ ┌────────────────────┐
|
||||
│ │FCircuit │
|
||||
│ │ │
|
||||
└────►│ h =Hash(z_i[0],w_i)│
|
||||
│ │ =Hash(v, w_i) │
|
||||
────────►│ │ ├───────►
|
||||
z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
|
||||
│ │
|
||||
└────────────────────┘
|
||||
```
|
||||
|
||||
where each $w_i$ value is set at the `external_inputs` array.
|
||||
|
||||
The last state $z_i$ is used together with the external input w_i as inputs to compute the new state $z_{i+1}$.
|
||||
The function F will output the new state in an array of two elements, where the second element is a 0. In other words, $z_{i+1} = [F([z_i, w_i]), 0]$, and the 0 will be replaced by $w_{i+1}$ in the next iteration, so $z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0]$.
|
||||
|
||||
```rust
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ExternalInputsCircuits<F: PrimeField>
|
||||
where
|
||||
F: Absorb,
|
||||
{
|
||||
_f: PhantomData<F>,
|
||||
poseidon_config: PoseidonConfig<F>,
|
||||
external_inputs: Vec<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
|
||||
where
|
||||
F: Absorb,
|
||||
{
|
||||
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs
|
||||
|
||||
fn new(params: Self::Params) -> Self {
|
||||
Self {
|
||||
_f: PhantomData,
|
||||
poseidon_config: params.0,
|
||||
external_inputs: params.1,
|
||||
}
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
2
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
|
||||
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
|
||||
Ok(vec![h, F::zero()])
|
||||
}
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let crh_params =
|
||||
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
|
||||
let external_inputVar =
|
||||
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
|
||||
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
|
||||
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
|
||||
Ok(vec![h, FpVar::<F>::zero()])
|
||||
}
|
||||
}
|
||||
```
|
||||
30
src/usage/frontend-circom.md
Normal file
30
src/usage/frontend-circom.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# Circom frontend
|
||||
We can define the circuit to be folded in Circom. The only interface that we need to fit in is:
|
||||
|
||||
```c
|
||||
template FCircuit() {
|
||||
signal input ivc_input[1];
|
||||
signal output ivc_output[1];
|
||||
// [...]
|
||||
}
|
||||
component main {public [ivc_input]} = Example();
|
||||
```
|
||||
|
||||
The `ivc_input` is the array that defines the initial state, and the `ivc_output` is the array that defines the output state after the step.
|
||||
|
||||
So for example, the following circuit does the traditional example at each step, which proves knowledge of $x$ such that $y==x^3 + x + 5$ for a known $y$:
|
||||
|
||||
```c
|
||||
pragma circom 2.0.3;
|
||||
|
||||
template Example () {
|
||||
signal input ivc_input[1];
|
||||
signal output ivc_output[1];
|
||||
signal temp;
|
||||
|
||||
temp <== ivc_input[0] * ivc_input[0];
|
||||
ivc_output[0] <== temp * ivc_input[0] + ivc_input[0] + 5;
|
||||
}
|
||||
|
||||
component main {public [ivc_input]} = Example();
|
||||
```
|
||||
@@ -43,180 +43,3 @@ pub trait FCircuit<F: PrimeField>: Clone + Debug {
|
||||
}
|
||||
```
|
||||
|
||||
# Example
|
||||
|
||||
Let's walk through different simple examples implementing the `FCircuit` trait. By the end of this section, you will hopefully be familiar with how to integrate an `arkworks` circuit into sonobe.
|
||||
|
||||
## Folding a simple circuit
|
||||
|
||||
The circuit we will fold has a state of 5 public elements. At each step, we will want the circuit to compute the next state by:
|
||||
|
||||
1. adding 4 to the first element
|
||||
2. adding 40 to the second element
|
||||
3. multiplying the third element by 4
|
||||
4. multiplying the fourth element by 40
|
||||
5. adding 100 to the fifth element
|
||||
|
||||
Let's implement this now:
|
||||
|
||||
```rust
|
||||
// Define a struct that will be our circuit. This struct will implement the FCircuit trait.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MultiInputsFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
|
||||
// Implement the FCircuit trait for the struct
|
||||
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
|
||||
fn state_len(&self) -> usize {
|
||||
5 // This circuit has 5 inputs
|
||||
}
|
||||
|
||||
// Computes the next state values in place, assigning z_{i+1} into z_i, and computing the new z_{i+1}
|
||||
// We want the `step_native` method to implement the same logic as the `generate_step_constraints` method
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let a = z_i[0] + F::from(4_u32);
|
||||
let b = z_i[1] + F::from(40_u32);
|
||||
let c = z_i[2] * F::from(4_u32);
|
||||
let d = z_i[3] * F::from(40_u32);
|
||||
let e = z_i[4] + F::from(100_u32);
|
||||
|
||||
Ok(vec![a, b, c, d, e]) // The length of the returned vector should match `state_len`
|
||||
}
|
||||
|
||||
/// Generates R1CS constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
// Implementing the circuit constraints
|
||||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
||||
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
||||
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
||||
let a = z_i[0].clone() + four.clone();
|
||||
let b = z_i[1].clone() + forty.clone();
|
||||
let c = z_i[2].clone() * four;
|
||||
let d = z_i[3].clone() * forty;
|
||||
let e = z_i[4].clone() + onehundred;
|
||||
|
||||
Ok(vec![a, b, c, d, e]) // The length of the returned vector should match `state_len`
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Folding a `Sha256` circuit
|
||||
|
||||
We will fold a simple `Sha256` circuit. The circuit has a state of 1 public element. At each step, we will want the circuit to compute the next state by applying the `Sha256` function to the current state.
|
||||
|
||||
Note that the logic here is also very similar to the previous example: write a struct that will hold the circuit, implement the `FCircuit` trait for the struct, ensure that the length of the state is correct, and implement the `step_native` and `generate_step_constraints` methods.
|
||||
|
||||
```rust
|
||||
// Define a struct that will be our circuit. This struct will implement the FCircuit trait.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Sha256FCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// Computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
||||
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
||||
|
||||
Ok(vec![out[0]])
|
||||
}
|
||||
|
||||
/// Generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
_cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let unit_var = UnitVar::default();
|
||||
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
|
||||
let out = out_bytes.0.to_constraint_field()?;
|
||||
Ok(vec![out[0].clone()])
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Folding a circuit with public and private inputs
|
||||
|
||||
Sometimes, the circuit to be folded will have private inputs. Let's see how we can setup such a circuit to be folded with sonobe. Again, the logic here is also very similar to our previous examples. The main difference is that the `struct` which will hold the circuit also holds a `Vec` of private inputs.
|
||||
|
||||
```rust
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ACircuitWithPrivateState<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
private_state: Vec<F>, // private inputs, here a `Vec` of field elements, but you can specify whatever type you prefer here
|
||||
}
|
||||
|
||||
impl<F: PrimeField> FCircuit<F> for ACircuitWithPrivateState<F> {
|
||||
type Params = Vec<F>;
|
||||
|
||||
fn new(params: Self::Params) -> Self {
|
||||
Self {
|
||||
_f: PhantomData,
|
||||
private_state: params,
|
||||
}
|
||||
}
|
||||
|
||||
fn state_len(&self) -> usize {
|
||||
3 // the length of the state should match the size of the public inputs, not including the private inputs
|
||||
}
|
||||
|
||||
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, folding_schemes::Error> {
|
||||
let a = z_i[0] + F::from(4_u32);
|
||||
let b = z_i[1] + F::from(40_u32);
|
||||
let c = z_i[2] * F::from(4_u32);
|
||||
let d = self.private_state[0] * a;
|
||||
let e = self.private_state[1] * c;
|
||||
|
||||
Ok(vec![a, b, c])
|
||||
Ok(new_z_i)
|
||||
}
|
||||
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
i: usize,
|
||||
z_i: Vec<ark_r1cs_std::fields::fp::FpVar<F>>,
|
||||
) -> Result<Vec<ark_r1cs_std::fields::fp::FpVar<F>>, SynthesisError> {
|
||||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
||||
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
||||
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
||||
|
||||
// we still need to allocate our private state as witnesses
|
||||
let priv_var_0 = FpVar::<F>::new_witness(cs.clone(), || Ok(self.private_state[0].clone()))?;
|
||||
let priv_var_1 = FpVar::<F>::new_witness(cs.clone(), || Ok(self.private_state[1].clone()))?;
|
||||
|
||||
let a = z_i[0].clone() + four.clone();
|
||||
let b = z_i[1].clone() + forty.clone();
|
||||
let c = z_i[2].clone() * four;
|
||||
let d = priv_var_0 * a;
|
||||
let e = priv_var_1 * c;
|
||||
|
||||
Ok(vec![a, b, c])
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user