Files
sonobe-playground/analysis.py
Piotr Mikołajczyk bb00087151 Plot M vs N
2024-10-15 15:21:52 +02:00

138 lines
4.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import json
import re
import matplotlib.pyplot as plt
import numpy as np
# Function to convert time units to seconds
def convert_to_seconds(time_str):
if time_str.endswith('µs'):
return float(time_str[:-2]) * 1e-6
elif time_str.endswith('ms'):
return float(time_str[:-2]) * 1e-3
elif time_str.endswith('s'):
return float(time_str[:-1])
return 0
def report(operation, time):
return f"{operation}: {time:.6f} seconds"
scenarios = {}
free_logs = []
hypernova = [[None] * 7 for _ in range(7)]
def process_logline(log):
fields = log.get("fields", {})
span = log.get("span", {})
scenario_name = None
time_seconds = convert_to_seconds(fields["time.busy"])
# A folding scheme scenario is one of our ancestors
for s in log.get("spans", []):
if s.get("name") == "scenario":
scenario_name = s.get("folding_scheme")
# Top level span
if not scenario_name:
folding_scheme = span.get("folding_scheme")
if folding_scheme is not None:
free_logs.append(report(f"{folding_scheme} total time", time_seconds))
hypernova_params = re.fullmatch(r"HyperNova<(\d),(\d)>", folding_scheme)
if hypernova_params:
hypernova[int(hypernova_params.groups()[0])][int(hypernova_params.groups()[1])] = time_seconds
else:
free_logs.append(report(span["name"], time_seconds))
return
# Within a folding scheme scenario
if scenario_name not in scenarios:
scenarios[scenario_name] = {
"Prepare folding": 0,
"Transform input": 0,
"Folding verification": 0,
"Proving": [],
"Input prep": [],
}
span_name = span.get("name")
if span_name == "Proving":
scenarios[scenario_name]["Proving"].append(time_seconds)
elif span_name == "Input prep":
scenarios[scenario_name]["Input prep"].append(time_seconds)
else:
scenarios[scenario_name][span_name] = time_seconds
def process_logs(file_path):
with open(file_path, 'r') as f:
for line in f:
process_logline(json.loads(line))
def print_results():
for log in free_logs:
print(log)
print()
for scenario_name, data in scenarios.items():
print("-" * 80)
print(f"Scenario: {scenario_name}")
print(report(" Prepare folding", data["Prepare folding"]))
print(report(" Transform input", data["Transform input"]))
print(report(" Folding verification", data["Folding verification"]))
print(f" Folding Steps:")
input_trans = data["Input prep"]
print(" Input preparation")
print(report(" Avg", sum(input_trans) / len(input_trans)))
print(report(" Min", min(input_trans)))
print(report(" Max", max(input_trans)))
proving_steps = data["Proving"]
print(" Proving")
print(report(" Avg", sum(proving_steps) / len(proving_steps)))
print(report(" Min", min(proving_steps)))
print(report(" Max", max(proving_steps)))
def draw_hn_plot():
data_np = np.array(hypernova, dtype=np.float64)
data_np = np.where(np.isnan(data_np), 0, data_np) # Replace None with 0 for better visualization
cmap = plt.cm.viridis
cmap.set_under('white') # Set background color for None
fig, ax = plt.subplots()
cax = ax.matshow(data_np, cmap=cmap, vmin=0.01)
fig.colorbar(cax)
for i in range(len(hypernova)):
for j in range(len(hypernova[i])):
if hypernova[i][j] is not None:
ax.text(j, i, f'{hypernova[i][j]:.2f}', va='center', ha='center', color='black')
# Set axis labels and title
ax.set_xlabel('ν (number of incoming CCCS instances)')
ax.set_ylabel('μ (number of running LCCCS instances)')
ax.set_xticks(np.arange(len(hypernova[0])))
ax.set_yticks(np.arange(len(hypernova)))
ax.set_xticklabels([f'{i}' for i in range(len(hypernova[0]))])
ax.set_yticklabels([f'{i}' for i in range(len(hypernova))])
plt.title("HyperNova multifold times")
# Show the plot
plt.show()
process_logs('out.log')
print_results()
draw_hn_plot()