|
|
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_crypto_primitives::{
crh::{
poseidon::constraints::{CRHGadget, CRHParametersVar},
poseidon::CRH,
CRHScheme, CRHSchemeGadget,
},
sponge::{poseidon::PoseidonConfig, Absorb},
};
use ark_ff::PrimeField;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::Zero;
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use core::marker::PhantomData;
use std::time::Instant;
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use folding_schemes::transcript::poseidon::poseidon_test_config;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
///
/// In this example we set the state to be the previous state together with an external input, and
/// the new state is an array which contains the new state and a zero which will be ignored.
///
/// This is useful for example if we want to fold multiple verifications of signatures, where the
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
/// keep things simpler, the following example does not verify signatures but does a similar
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
/// together with an external input (w_i).
///
/// w_1 w_2 w_3 w_4
/// │ │ │ │
/// ▼ ▼ ▼ ▼
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
/// ─────►│F├────►│F├────►│F├────►│F├────►
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
///
///
/// where each F is:
/// w_i
/// │ ┌────────────────────┐
/// │ │FCircuit │
/// │ │ │
/// └────►│ h =Hash(z_i[0],w_i)│
/// │ │ =Hash(v, w_i) │
/// ────────►│ │ ├───────►
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
/// │ │
/// └────────────────────┘
///
/// where each w_i value is set at the external_inputs array.
///
/// The last state z_i is used together with the external input w_i as inputs to compute the new
/// state z_{i+1}.
/// The function F will output the new state in an array of two elements, where the second element
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0].
#[derive(Clone, Debug)]
pub struct ExternalInputsCircuits<F: PrimeField>
where
F: Absorb,
{
_f: PhantomData<F>,
poseidon_config: PoseidonConfig<F>,
external_inputs: Vec<F>,
}
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
where
F: Absorb,
{
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs
fn new(params: Self::Params) -> Self {
Self {
_f: PhantomData,
poseidon_config: params.0,
external_inputs: params.1,
}
}
fn state_len(&self) -> usize {
2
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
Ok(vec![h, F::zero()])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let crh_params =
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
let external_inputVar =
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
Ok(vec![h, FpVar::<F>::zero()])
}
}
/// cargo test --example external_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let poseidon_config = poseidon_test_config::<Fr>();
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)]));
let z_i = vec![Fr::from(1_u32), Fr::zero()];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example external_inputs
fn main() {
let num_steps = 5;
let initial_state = vec![Fr::from(1_u32), Fr::zero()];
// set the external inputs to be used at each folding step
let external_inputs = vec![
Fr::from(3_u32),
Fr::from(33_u32),
Fr::from(73_u32),
Fr::from(103_u32),
Fr::from(125_u32),
];
assert_eq!(external_inputs.len(), num_steps);
let poseidon_config = poseidon_test_config::<Fr>();
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs));
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) =
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
ExternalInputsCircuits<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
println!(
"state at last step (after {} iterations): {:?}",
num_steps,
folding_scheme.state()
);
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}
|