mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-08 15:01:30 +01:00
Fit Nova+CycleFold into FoldingScheme trait & Add examples/ for folding SHA256 circuit (#64)
* Update FoldingSchemes trait, fit Nova+CycleFold - update lib.rs's `FoldingScheme` trait interface - fit Nova+CycleFold into the `FoldingScheme` trait - refactor `src/nova/*` * Add `examples` dir, with Nova's `FoldingScheme` example * polishing * expose poseidon_test_config outside tests
This commit is contained in:
172
examples/fold_sha256.rs
Normal file
172
examples/fold_sha256.rs
Normal file
@@ -0,0 +1,172 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
|
||||
use ark_crypto_primitives::crh::{
|
||||
sha256::{
|
||||
constraints::{Sha256Gadget, UnitVar},
|
||||
Sha256,
|
||||
},
|
||||
CRHScheme, CRHSchemeGadget,
|
||||
};
|
||||
use ark_ff::{BigInteger, PrimeField, ToConstraintField};
|
||||
use ark_r1cs_std::{fields::fp::FpVar, ToBytesGadget, ToConstraintFieldGadget};
|
||||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
use core::marker::PhantomData;
|
||||
use std::time::Instant;
|
||||
|
||||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
||||
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
use folding_schemes::folding::nova::{get_r1cs, Nova, ProverParams, VerifierParams};
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
use folding_schemes::{Error, FoldingScheme};
|
||||
|
||||
/// This is the circuit that we want to fold, it implements the FCircuit trait.
|
||||
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
|
||||
/// applying the step.
|
||||
/// In this example we set z_i and z_{i+1} to be a single value, but the trait is made to support
|
||||
/// arrays, so our state could be an array with different values.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Sha256FCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
||||
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
||||
|
||||
Ok(vec![out[0]])
|
||||
}
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
_cs: ConstraintSystemRef<F>,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let unit_var = UnitVar::default();
|
||||
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
|
||||
let out = out_bytes.0.to_constraint_field()?;
|
||||
Ok(vec![out[0].clone()])
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo test --example simple
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
||||
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
|
||||
#[test]
|
||||
fn test_sha256_f_circuit() {
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let circuit = Sha256FCircuit::<Fr>::new(());
|
||||
let z_i = vec![Fr::from(1_u32)];
|
||||
|
||||
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
||||
|
||||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let computed_z_i1Var = circuit
|
||||
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
||||
.unwrap();
|
||||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
}
|
||||
}
|
||||
|
||||
// This method computes the Prover & Verifier parameters for the example. For a real world use case
|
||||
// those parameters should be generated carefuly (both the PoseidonConfig and the PedersenParams)
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn nova_setup<FC: FCircuit<Fr>>(
|
||||
F_circuit: FC,
|
||||
) -> (
|
||||
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
|
||||
VerifierParams<Projective, Projective2>,
|
||||
) {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
||||
// get the CM & CF_CM len
|
||||
let (r1cs, cf_r1cs) =
|
||||
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
||||
let cm_len = r1cs.A.n_rows;
|
||||
let cf_cm_len = cf_r1cs.A.n_rows;
|
||||
|
||||
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
|
||||
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
|
||||
|
||||
let prover_params =
|
||||
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
cm_params: pedersen_params,
|
||||
cf_cm_params: cf_pedersen_params,
|
||||
};
|
||||
let verifier_params = VerifierParams::<Projective, Projective2> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
r1cs,
|
||||
cf_r1cs,
|
||||
};
|
||||
(prover_params, verifier_params)
|
||||
}
|
||||
|
||||
/// cargo run --release --example fold_sha256
|
||||
fn main() {
|
||||
let num_steps = 10;
|
||||
let initial_state = vec![Fr::from(1_u32)];
|
||||
|
||||
let F_circuit = Sha256FCircuit::<Fr>::new(());
|
||||
|
||||
println!("Prepare Nova ProverParams & VerifierParams");
|
||||
let (prover_params, verifier_params) = nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
|
||||
|
||||
/// The idea here is that eventually we could replace the next line chunk that defines the
|
||||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
||||
/// trait, and the rest of our code would be working without needing to be updated.
|
||||
type NOVA = Nova<
|
||||
Projective,
|
||||
GVar,
|
||||
Projective2,
|
||||
GVar2,
|
||||
Sha256FCircuit<Fr>,
|
||||
Pedersen<Projective>,
|
||||
Pedersen<Projective2>,
|
||||
>;
|
||||
|
||||
println!("Initialize FoldingScheme");
|
||||
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
||||
|
||||
// compute a step of the IVC
|
||||
for i in 0..num_steps {
|
||||
let start = Instant::now();
|
||||
folding_scheme.prove_step().unwrap();
|
||||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
||||
}
|
||||
|
||||
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
|
||||
|
||||
println!("Run the Nova's IVC verifier");
|
||||
NOVA::verify(
|
||||
verifier_params,
|
||||
initial_state,
|
||||
folding_scheme.state(), // latest state
|
||||
Fr::from(num_steps as u32),
|
||||
running_instance,
|
||||
incomming_instance,
|
||||
cyclefold_instance,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
Reference in New Issue
Block a user