* Update FoldingSchemes trait, fit Nova+CycleFold - update lib.rs's `FoldingScheme` trait interface - fit Nova+CycleFold into the `FoldingScheme` trait - refactor `src/nova/*` * Add `examples` dir, with Nova's `FoldingScheme` example * polishing * expose poseidon_test_config outside testsmain
@ -0,0 +1,172 @@ |
|||||
|
#![allow(non_snake_case)]
|
||||
|
#![allow(non_upper_case_globals)]
|
||||
|
#![allow(non_camel_case_types)]
|
||||
|
#![allow(clippy::upper_case_acronyms)]
|
||||
|
|
||||
|
use ark_crypto_primitives::crh::{
|
||||
|
sha256::{
|
||||
|
constraints::{Sha256Gadget, UnitVar},
|
||||
|
Sha256,
|
||||
|
},
|
||||
|
CRHScheme, CRHSchemeGadget,
|
||||
|
};
|
||||
|
use ark_ff::{BigInteger, PrimeField, ToConstraintField};
|
||||
|
use ark_r1cs_std::{fields::fp::FpVar, ToBytesGadget, ToConstraintFieldGadget};
|
||||
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
|
use core::marker::PhantomData;
|
||||
|
use std::time::Instant;
|
||||
|
|
||||
|
use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
|
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
|
||||
|
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
|
use folding_schemes::folding::nova::{get_r1cs, Nova, ProverParams, VerifierParams};
|
||||
|
use folding_schemes::frontend::FCircuit;
|
||||
|
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
|
use folding_schemes::{Error, FoldingScheme};
|
||||
|
|
||||
|
/// This is the circuit that we want to fold, it implements the FCircuit trait.
|
||||
|
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
|
||||
|
/// applying the step.
|
||||
|
/// In this example we set z_i and z_{i+1} to be a single value, but the trait is made to support
|
||||
|
/// arrays, so our state could be an array with different values.
|
||||
|
#[derive(Clone, Copy, Debug)]
|
||||
|
pub struct Sha256FCircuit<F: PrimeField> {
|
||||
|
_f: PhantomData<F>,
|
||||
|
}
|
||||
|
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
|
type Params = ();
|
||||
|
|
||||
|
fn new(_params: Self::Params) -> Self {
|
||||
|
Self { _f: PhantomData }
|
||||
|
}
|
||||
|
|
||||
|
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
|
/// z_{i+1}
|
||||
|
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
|
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
||||
|
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
||||
|
|
||||
|
Ok(vec![out[0]])
|
||||
|
}
|
||||
|
|
||||
|
/// generates the constraints for the step of F for the given z_i
|
||||
|
fn generate_step_constraints(
|
||||
|
self,
|
||||
|
_cs: ConstraintSystemRef<F>,
|
||||
|
z_i: Vec<FpVar<F>>,
|
||||
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
|
let unit_var = UnitVar::default();
|
||||
|
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
|
||||
|
let out = out_bytes.0.to_constraint_field()?;
|
||||
|
Ok(vec![out[0].clone()])
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
/// cargo test --example simple
|
||||
|
#[cfg(test)]
|
||||
|
pub mod tests {
|
||||
|
use super::*;
|
||||
|
use ark_r1cs_std::alloc::AllocVar;
|
||||
|
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
|
||||
|
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
|
||||
|
#[test]
|
||||
|
fn test_sha256_f_circuit() {
|
||||
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
|
||||
|
let circuit = Sha256FCircuit::<Fr>::new(());
|
||||
|
let z_i = vec![Fr::from(1_u32)];
|
||||
|
|
||||
|
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
||||
|
|
||||
|
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
|
let computed_z_i1Var = circuit
|
||||
|
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
||||
|
.unwrap();
|
||||
|
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
// This method computes the Prover & Verifier parameters for the example. For a real world use case
|
||||
|
// those parameters should be generated carefuly (both the PoseidonConfig and the PedersenParams)
|
||||
|
#[allow(clippy::type_complexity)]
|
||||
|
fn nova_setup<FC: FCircuit<Fr>>(
|
||||
|
F_circuit: FC,
|
||||
|
) -> (
|
||||
|
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
|
||||
|
VerifierParams<Projective, Projective2>,
|
||||
|
) {
|
||||
|
let mut rng = ark_std::test_rng();
|
||||
|
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
|
||||
|
// get the CM & CF_CM len
|
||||
|
let (r1cs, cf_r1cs) =
|
||||
|
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
||||
|
let cm_len = r1cs.A.n_rows;
|
||||
|
let cf_cm_len = cf_r1cs.A.n_rows;
|
||||
|
|
||||
|
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
|
||||
|
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
|
||||
|
|
||||
|
let prover_params =
|
||||
|
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
|
||||
|
poseidon_config: poseidon_config.clone(),
|
||||
|
cm_params: pedersen_params,
|
||||
|
cf_cm_params: cf_pedersen_params,
|
||||
|
};
|
||||
|
let verifier_params = VerifierParams::<Projective, Projective2> {
|
||||
|
poseidon_config: poseidon_config.clone(),
|
||||
|
r1cs,
|
||||
|
cf_r1cs,
|
||||
|
};
|
||||
|
(prover_params, verifier_params)
|
||||
|
}
|
||||
|
|
||||
|
/// cargo run --release --example fold_sha256
|
||||
|
fn main() {
|
||||
|
let num_steps = 10;
|
||||
|
let initial_state = vec![Fr::from(1_u32)];
|
||||
|
|
||||
|
let F_circuit = Sha256FCircuit::<Fr>::new(());
|
||||
|
|
||||
|
println!("Prepare Nova ProverParams & VerifierParams");
|
||||
|
let (prover_params, verifier_params) = nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
|
||||
|
|
||||
|
/// The idea here is that eventually we could replace the next line chunk that defines the
|
||||
|
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
||||
|
/// trait, and the rest of our code would be working without needing to be updated.
|
||||
|
type NOVA = Nova<
|
||||
|
Projective,
|
||||
|
GVar,
|
||||
|
Projective2,
|
||||
|
GVar2,
|
||||
|
Sha256FCircuit<Fr>,
|
||||
|
Pedersen<Projective>,
|
||||
|
Pedersen<Projective2>,
|
||||
|
>;
|
||||
|
|
||||
|
println!("Initialize FoldingScheme");
|
||||
|
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
||||
|
|
||||
|
// compute a step of the IVC
|
||||
|
for i in 0..num_steps {
|
||||
|
let start = Instant::now();
|
||||
|
folding_scheme.prove_step().unwrap();
|
||||
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
||||
|
}
|
||||
|
|
||||
|
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
|
||||
|
|
||||
|
println!("Run the Nova's IVC verifier");
|
||||
|
NOVA::verify(
|
||||
|
verifier_params,
|
||||
|
initial_state,
|
||||
|
folding_scheme.state(), // latest state
|
||||
|
Fr::from(num_steps as u32),
|
||||
|
running_instance,
|
||||
|
incomming_instance,
|
||||
|
cyclefold_instance,
|
||||
|
)
|
||||
|
.unwrap();
|
||||
|
}
|
@ -1,5 +1,5 @@ |
|||||
// used for the RO challenges.
|
// used for the RO challenges.
|
||||
// From [Srinath Setty](research.microsoft.com/en-us/people/srinath/): In Nova, soundness error ≤
|
|
||||
// 2/|S|, where S is the subset of the field F from which the challenges are drawn. In this case,
|
|
||||
// we keep the size of S close to 2^128.
|
|
||||
|
// From [Srinath Setty](https://microsoft.com/en-us/research/people/srinath/): In Nova, soundness
|
||||
|
// error ≤ 2/|S|, where S is the subset of the field F from which the challenges are drawn. In this
|
||||
|
// case, we keep the size of S close to 2^128.
|
||||
pub const N_BITS_RO: usize = 128;
|
pub const N_BITS_RO: usize = 128;
|
@ -1,470 +0,0 @@ |
|||||
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
|
|
||||
use ark_ec::{AffineRepr, CurveGroup, Group};
|
|
||||
use ark_ff::{BigInteger, PrimeField};
|
|
||||
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar};
|
|
||||
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystem};
|
|
||||
use ark_std::{One, Zero};
|
|
||||
use core::marker::PhantomData;
|
|
||||
|
|
||||
use super::{
|
|
||||
circuits::{AugmentedFCircuit, ChallengeGadget, CF2},
|
|
||||
cyclefold::{CycleFoldChallengeGadget, CycleFoldCircuit},
|
|
||||
};
|
|
||||
use super::{nifs::NIFS, traits::NovaR1CS, CommittedInstance, Witness};
|
|
||||
use crate::ccs::r1cs::{extract_r1cs, extract_w_x, R1CS};
|
|
||||
use crate::commitment::CommitmentProver;
|
|
||||
use crate::frontend::FCircuit;
|
|
||||
use crate::Error;
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
use super::cyclefold::CF_IO_LEN;
|
|
||||
|
|
||||
/// Implements the Incremental Verifiable Computation described in sections 1.2 and 5 of
|
|
||||
/// [Nova](https://eprint.iacr.org/2021/370.pdf)
|
|
||||
pub struct IVC<C1, GC1, C2, GC2, FC, CP1, CP2>
|
|
||||
where
|
|
||||
C1: CurveGroup,
|
|
||||
GC1: CurveVar<C1, CF2<C1>>,
|
|
||||
C2: CurveGroup,
|
|
||||
GC2: CurveVar<C2, CF2<C2>>,
|
|
||||
FC: FCircuit<C1::ScalarField>,
|
|
||||
CP1: CommitmentProver<C1>,
|
|
||||
CP2: CommitmentProver<C2>,
|
|
||||
{
|
|
||||
_gc1: PhantomData<GC1>,
|
|
||||
_c2: PhantomData<C2>,
|
|
||||
_gc2: PhantomData<GC2>,
|
|
||||
/// R1CS of the Augmented Function circuit
|
|
||||
pub r1cs: R1CS<C1::ScalarField>,
|
|
||||
/// R1CS of the CycleFold circuit
|
|
||||
pub cf_r1cs: R1CS<C2::ScalarField>,
|
|
||||
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
|
|
||||
/// CommitmentProver::Params over C1
|
|
||||
pub cm_params: CP1::Params,
|
|
||||
/// CycleFold CommitmentProver::Params, over C2
|
|
||||
pub cf_cm_params: CP2::Params,
|
|
||||
/// F circuit, the circuit that is being folded
|
|
||||
pub F: FC,
|
|
||||
pub i: C1::ScalarField,
|
|
||||
/// initial state
|
|
||||
pub z_0: Vec<C1::ScalarField>,
|
|
||||
/// current i-th state
|
|
||||
pub z_i: Vec<C1::ScalarField>,
|
|
||||
/// Nova instances
|
|
||||
pub w_i: Witness<C1>,
|
|
||||
pub u_i: CommittedInstance<C1>,
|
|
||||
pub W_i: Witness<C1>,
|
|
||||
pub U_i: CommittedInstance<C1>,
|
|
||||
|
|
||||
/// CycleFold running instance
|
|
||||
pub cf_W_i: Witness<C2>,
|
|
||||
pub cf_U_i: CommittedInstance<C2>,
|
|
||||
}
|
|
||||
|
|
||||
impl<C1, GC1, C2, GC2, FC, CP1, CP2> IVC<C1, GC1, C2, GC2, FC, CP1, CP2>
|
|
||||
where
|
|
||||
C1: CurveGroup,
|
|
||||
GC1: CurveVar<C1, CF2<C1>>,
|
|
||||
C2: CurveGroup,
|
|
||||
GC2: CurveVar<C2, CF2<C2>>,
|
|
||||
FC: FCircuit<C1::ScalarField>,
|
|
||||
CP1: CommitmentProver<C1>,
|
|
||||
CP2: CommitmentProver<C2>,
|
|
||||
<C1 as CurveGroup>::BaseField: PrimeField,
|
|
||||
<C2 as CurveGroup>::BaseField: PrimeField,
|
|
||||
<C1 as Group>::ScalarField: Absorb,
|
|
||||
<C2 as Group>::ScalarField: Absorb,
|
|
||||
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
|
|
||||
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
|
|
||||
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
|
|
||||
{
|
|
||||
/// Initializes the IVC for the given parameters and initial state `z_0`.
|
|
||||
pub fn new(
|
|
||||
poseidon_config: PoseidonConfig<C1::ScalarField>,
|
|
||||
cm_params: CP1::Params,
|
|
||||
cf_cm_params: CP2::Params,
|
|
||||
F: FC,
|
|
||||
z_0: Vec<C1::ScalarField>,
|
|
||||
) -> Result<Self, Error> {
|
|
||||
// prepare the circuit to obtain its R1CS
|
|
||||
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
|
|
||||
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
|
|
||||
|
|
||||
let augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&poseidon_config, F);
|
|
||||
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
|
|
||||
|
|
||||
augmented_F_circuit.generate_constraints(cs.clone())?;
|
|
||||
cs.finalize();
|
|
||||
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
|
|
||||
let r1cs = extract_r1cs::<C1::ScalarField>(&cs);
|
|
||||
|
|
||||
cf_circuit.generate_constraints(cs2.clone())?;
|
|
||||
cs2.finalize();
|
|
||||
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
|
|
||||
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
|
|
||||
|
|
||||
// setup the dummy instances
|
|
||||
let (w_dummy, u_dummy) = r1cs.dummy_instance();
|
|
||||
let (cf_w_dummy, cf_u_dummy) = cf_r1cs.dummy_instance();
|
|
||||
|
|
||||
// W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the
|
|
||||
// R1CS that we're working with.
|
|
||||
Ok(Self {
|
|
||||
_gc1: PhantomData,
|
|
||||
_c2: PhantomData,
|
|
||||
_gc2: PhantomData,
|
|
||||
r1cs,
|
|
||||
cf_r1cs,
|
|
||||
poseidon_config,
|
|
||||
cm_params,
|
|
||||
cf_cm_params,
|
|
||||
F,
|
|
||||
i: C1::ScalarField::zero(),
|
|
||||
z_0: z_0.clone(),
|
|
||||
z_i: z_0,
|
|
||||
w_i: w_dummy.clone(),
|
|
||||
u_i: u_dummy.clone(),
|
|
||||
W_i: w_dummy,
|
|
||||
U_i: u_dummy,
|
|
||||
// cyclefold running instance
|
|
||||
cf_W_i: cf_w_dummy.clone(),
|
|
||||
cf_U_i: cf_u_dummy.clone(),
|
|
||||
})
|
|
||||
}
|
|
||||
|
|
||||
/// Implements IVC.P
|
|
||||
pub fn prove_step(&mut self) -> Result<(), Error> {
|
|
||||
let augmented_F_circuit: AugmentedFCircuit<C1, C2, GC2, FC>;
|
|
||||
let cf_circuit: CycleFoldCircuit<C1, GC1>;
|
|
||||
|
|
||||
let z_i1 = self.F.step_native(self.z_i.clone())?;
|
|
||||
|
|
||||
// compute T and cmT for AugmentedFCircuit
|
|
||||
let (T, cmT) = self.compute_cmT()?;
|
|
||||
|
|
||||
let r_bits = ChallengeGadget::<C1>::get_challenge_native(
|
|
||||
&self.poseidon_config,
|
|
||||
self.u_i.clone(),
|
|
||||
self.U_i.clone(),
|
|
||||
cmT,
|
|
||||
)?;
|
|
||||
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
|
|
||||
.ok_or(Error::OutOfBounds)?;
|
|
||||
|
|
||||
// fold Nova instances
|
|
||||
let (W_i1, U_i1): (Witness<C1>, CommittedInstance<C1>) = NIFS::<C1, CP1>::fold_instances(
|
|
||||
r_Fr, &self.w_i, &self.u_i, &self.W_i, &self.U_i, &T, cmT,
|
|
||||
)?;
|
|
||||
|
|
||||
// folded instance output (public input, x)
|
|
||||
// u_{i+1}.x = H(i+1, z_0, z_{i+1}, U_{i+1})
|
|
||||
let u_i1_x = U_i1.hash(
|
|
||||
&self.poseidon_config,
|
|
||||
self.i + C1::ScalarField::one(),
|
|
||||
self.z_0.clone(),
|
|
||||
z_i1.clone(),
|
|
||||
)?;
|
|
||||
|
|
||||
if self.i == C1::ScalarField::zero() {
|
|
||||
// base case
|
|
||||
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
|
|
||||
_gc2: PhantomData,
|
|
||||
poseidon_config: self.poseidon_config.clone(),
|
|
||||
i: Some(C1::ScalarField::zero()), // = i=0
|
|
||||
z_0: Some(self.z_0.clone()), // = z_i
|
|
||||
z_i: Some(self.z_i.clone()),
|
|
||||
u_i: Some(self.u_i.clone()), // = dummy
|
|
||||
U_i: Some(self.U_i.clone()), // = dummy
|
|
||||
U_i1: Some(U_i1.clone()),
|
|
||||
cmT: Some(cmT),
|
|
||||
F: self.F,
|
|
||||
x: Some(u_i1_x),
|
|
||||
cf_u_i: None,
|
|
||||
cf_U_i: None,
|
|
||||
cf_U_i1: None,
|
|
||||
cf_cmT: None,
|
|
||||
cf_r_nonnat: None,
|
|
||||
};
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
NIFS::<C1, CP1>::verify_folded_instance(r_Fr, &self.u_i, &self.U_i, &U_i1, &cmT)?;
|
|
||||
} else {
|
|
||||
// CycleFold part:
|
|
||||
// get the vector used as public inputs 'x' in the CycleFold circuit
|
|
||||
let cf_u_i_x = [
|
|
||||
get_committed_instance_coordinates(&self.u_i),
|
|
||||
get_committed_instance_coordinates(&self.U_i),
|
|
||||
get_committed_instance_coordinates(&U_i1),
|
|
||||
]
|
|
||||
.concat();
|
|
||||
|
|
||||
cf_circuit = CycleFoldCircuit::<C1, GC1> {
|
|
||||
_gc: PhantomData,
|
|
||||
r_bits: Some(r_bits.clone()),
|
|
||||
cmT: Some(cmT),
|
|
||||
u_i: Some(self.u_i.clone()),
|
|
||||
U_i: Some(self.U_i.clone()),
|
|
||||
U_i1: Some(U_i1.clone()),
|
|
||||
x: Some(cf_u_i_x.clone()),
|
|
||||
};
|
|
||||
|
|
||||
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
|
|
||||
cf_circuit.generate_constraints(cs2.clone())?;
|
|
||||
|
|
||||
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
|
|
||||
let (cf_w_i, cf_x_i) = extract_w_x::<C1::BaseField>(&cs2);
|
|
||||
if cf_x_i != cf_u_i_x {
|
|
||||
return Err(Error::NotEqual);
|
|
||||
}
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
if cf_x_i.len() != CF_IO_LEN {
|
|
||||
return Err(Error::NotExpectedLength(cf_x_i.len(), CF_IO_LEN));
|
|
||||
}
|
|
||||
|
|
||||
// fold cyclefold instances
|
|
||||
let cf_w_i = Witness::<C2>::new(cf_w_i.clone(), self.cf_r1cs.A.n_rows);
|
|
||||
let cf_u_i: CommittedInstance<C2> =
|
|
||||
cf_w_i.commit::<CP2>(&self.cf_cm_params, cf_x_i.clone())?;
|
|
||||
|
|
||||
// compute T* and cmT* for CycleFoldCircuit
|
|
||||
let (cf_T, cf_cmT) = self.compute_cf_cmT(&cf_w_i, &cf_u_i)?;
|
|
||||
|
|
||||
let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_native(
|
|
||||
&self.poseidon_config,
|
|
||||
cf_u_i.clone(),
|
|
||||
self.cf_U_i.clone(),
|
|
||||
cf_cmT,
|
|
||||
)?;
|
|
||||
let cf_r_Fq = C1::BaseField::from_bigint(BigInteger::from_bits_le(&cf_r_bits))
|
|
||||
.ok_or(Error::OutOfBounds)?;
|
|
||||
|
|
||||
let (cf_W_i1, cf_U_i1) = NIFS::<C2, CP2>::fold_instances(
|
|
||||
cf_r_Fq,
|
|
||||
&self.cf_W_i,
|
|
||||
&self.cf_U_i,
|
|
||||
&cf_w_i,
|
|
||||
&cf_u_i,
|
|
||||
&cf_T,
|
|
||||
cf_cmT,
|
|
||||
)?;
|
|
||||
|
|
||||
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
|
|
||||
_gc2: PhantomData,
|
|
||||
poseidon_config: self.poseidon_config.clone(),
|
|
||||
i: Some(self.i),
|
|
||||
z_0: Some(self.z_0.clone()),
|
|
||||
z_i: Some(self.z_i.clone()),
|
|
||||
u_i: Some(self.u_i.clone()),
|
|
||||
U_i: Some(self.U_i.clone()),
|
|
||||
U_i1: Some(U_i1.clone()),
|
|
||||
cmT: Some(cmT),
|
|
||||
F: self.F,
|
|
||||
x: Some(u_i1_x),
|
|
||||
// cyclefold values
|
|
||||
cf_u_i: Some(cf_u_i.clone()),
|
|
||||
cf_U_i: Some(self.cf_U_i.clone()),
|
|
||||
cf_U_i1: Some(cf_U_i1.clone()),
|
|
||||
cf_cmT: Some(cf_cmT),
|
|
||||
cf_r_nonnat: Some(cf_r_Fq),
|
|
||||
};
|
|
||||
|
|
||||
self.cf_W_i = cf_W_i1.clone();
|
|
||||
self.cf_U_i = cf_U_i1.clone();
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
{
|
|
||||
self.cf_r1cs.check_instance_relation(&cf_w_i, &cf_u_i)?;
|
|
||||
self.cf_r1cs
|
|
||||
.check_relaxed_instance_relation(&self.cf_W_i, &self.cf_U_i)?;
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
|
|
||||
|
|
||||
augmented_F_circuit.generate_constraints(cs.clone())?;
|
|
||||
|
|
||||
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
|
|
||||
let (w_i1, x_i1) = extract_w_x::<C1::ScalarField>(&cs);
|
|
||||
if x_i1[0] != u_i1_x {
|
|
||||
return Err(Error::NotEqual);
|
|
||||
}
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
if x_i1.len() != 1 {
|
|
||||
return Err(Error::NotExpectedLength(x_i1.len(), 1));
|
|
||||
}
|
|
||||
|
|
||||
// set values for next iteration
|
|
||||
self.i += C1::ScalarField::one();
|
|
||||
self.z_i = z_i1.clone();
|
|
||||
self.w_i = Witness::<C1>::new(w_i1, self.r1cs.A.n_rows);
|
|
||||
self.u_i = self.w_i.commit::<CP1>(&self.cm_params, vec![u_i1_x])?;
|
|
||||
self.W_i = W_i1.clone();
|
|
||||
self.U_i = U_i1.clone();
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
{
|
|
||||
self.r1cs.check_instance_relation(&self.w_i, &self.u_i)?;
|
|
||||
self.r1cs
|
|
||||
.check_relaxed_instance_relation(&self.W_i, &self.U_i)?;
|
|
||||
}
|
|
||||
|
|
||||
Ok(())
|
|
||||
}
|
|
||||
|
|
||||
/// Implements IVC.V
|
|
||||
pub fn verify(&mut self, z_0: Vec<C1::ScalarField>, num_steps: u32) -> Result<(), Error> {
|
|
||||
if self.i != C1::ScalarField::from(num_steps) {
|
|
||||
return Err(Error::IVCVerificationFail);
|
|
||||
}
|
|
||||
|
|
||||
if self.u_i.x.len() != 1 || self.U_i.x.len() != 1 {
|
|
||||
return Err(Error::IVCVerificationFail);
|
|
||||
}
|
|
||||
|
|
||||
// check that u_i's output points to the running instance
|
|
||||
// u_i.X == H(i, z_0, z_i, U_i)
|
|
||||
let expected_u_i_x = self
|
|
||||
.U_i
|
|
||||
.hash(&self.poseidon_config, self.i, z_0, self.z_i.clone())?;
|
|
||||
if expected_u_i_x != self.u_i.x[0] {
|
|
||||
return Err(Error::IVCVerificationFail);
|
|
||||
}
|
|
||||
|
|
||||
// check u_i.cmE==0, u_i.u==1 (=u_i is a un-relaxed instance)
|
|
||||
if !self.u_i.cmE.is_zero() || !self.u_i.u.is_one() {
|
|
||||
return Err(Error::IVCVerificationFail);
|
|
||||
}
|
|
||||
|
|
||||
// check R1CS satisfiability
|
|
||||
self.r1cs.check_instance_relation(&self.w_i, &self.u_i)?;
|
|
||||
// check RelaxedR1CS satisfiability
|
|
||||
self.r1cs
|
|
||||
.check_relaxed_instance_relation(&self.W_i, &self.U_i)?;
|
|
||||
|
|
||||
// check CycleFold RelaxedR1CS satisfiability
|
|
||||
self.cf_r1cs
|
|
||||
.check_relaxed_instance_relation(&self.cf_W_i, &self.cf_U_i)?;
|
|
||||
|
|
||||
Ok(())
|
|
||||
}
|
|
||||
|
|
||||
// computes T and cmT for the AugmentedFCircuit
|
|
||||
fn compute_cmT(&self) -> Result<(Vec<C1::ScalarField>, C1), Error> {
|
|
||||
NIFS::<C1, CP1>::compute_cmT(
|
|
||||
&self.cm_params,
|
|
||||
&self.r1cs,
|
|
||||
&self.w_i,
|
|
||||
&self.u_i,
|
|
||||
&self.W_i,
|
|
||||
&self.U_i,
|
|
||||
)
|
|
||||
}
|
|
||||
// computes T* and cmT* for the CycleFoldCircuit
|
|
||||
fn compute_cf_cmT(
|
|
||||
&self,
|
|
||||
cf_w_i: &Witness<C2>,
|
|
||||
cf_u_i: &CommittedInstance<C2>,
|
|
||||
) -> Result<(Vec<C2::ScalarField>, C2), Error> {
|
|
||||
NIFS::<C2, CP2>::compute_cyclefold_cmT(
|
|
||||
&self.cf_cm_params,
|
|
||||
&self.cf_r1cs,
|
|
||||
cf_w_i,
|
|
||||
cf_u_i,
|
|
||||
&self.cf_W_i,
|
|
||||
&self.cf_U_i,
|
|
||||
)
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
pub(crate) fn get_committed_instance_coordinates<C: CurveGroup>(
|
|
||||
u: &CommittedInstance<C>,
|
|
||||
) -> Vec<C::BaseField> {
|
|
||||
let zero = (&C::BaseField::zero(), &C::BaseField::one());
|
|
||||
|
|
||||
let cmE = u.cmE.into_affine();
|
|
||||
let (cmE_x, cmE_y) = cmE.xy().unwrap_or(zero);
|
|
||||
|
|
||||
let cmW = u.cmW.into_affine();
|
|
||||
let (cmW_x, cmW_y) = cmW.xy().unwrap_or(zero);
|
|
||||
vec![*cmE_x, *cmE_y, *cmW_x, *cmW_y]
|
|
||||
}
|
|
||||
|
|
||||
#[cfg(test)]
|
|
||||
pub mod tests {
|
|
||||
use super::*;
|
|
||||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
|
||||
|
|
||||
use crate::commitment::pedersen::Pedersen;
|
|
||||
use crate::frontend::tests::CubicFCircuit;
|
|
||||
use crate::transcript::poseidon::tests::poseidon_test_config;
|
|
||||
|
|
||||
/// helper method to get the r1cs from the circuit
|
|
||||
pub fn get_r1cs<F: PrimeField>(
|
|
||||
circuit: impl ConstraintSynthesizer<F>,
|
|
||||
) -> Result<R1CS<F>, Error> {
|
|
||||
let cs = ConstraintSystem::<F>::new_ref();
|
|
||||
circuit.generate_constraints(cs.clone())?;
|
|
||||
cs.finalize();
|
|
||||
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
|
|
||||
let r1cs = extract_r1cs::<F>(&cs);
|
|
||||
Ok(r1cs)
|
|
||||
}
|
|
||||
|
|
||||
/// helper method to get the pedersen params length for both the AugmentedFCircuit and the
|
|
||||
/// CycleFold circuit
|
|
||||
pub fn get_pedersen_params_len<FC: FCircuit<Fr>>(
|
|
||||
poseidon_config: &PoseidonConfig<Fr>,
|
|
||||
F_circuit: FC,
|
|
||||
) -> Result<(usize, usize), Error> {
|
|
||||
let augmented_F_circuit = AugmentedFCircuit::<Projective, Projective2, GVar2, FC>::empty(
|
|
||||
poseidon_config,
|
|
||||
F_circuit,
|
|
||||
);
|
|
||||
let cf_circuit = CycleFoldCircuit::<Projective, GVar>::empty();
|
|
||||
let r1cs = get_r1cs(augmented_F_circuit)?;
|
|
||||
let cf_r1cs = get_r1cs(cf_circuit)?;
|
|
||||
Ok((r1cs.A.n_rows, cf_r1cs.A.n_rows))
|
|
||||
}
|
|
||||
|
|
||||
#[test]
|
|
||||
fn test_ivc() {
|
|
||||
let mut rng = ark_std::test_rng();
|
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
|
||||
|
|
||||
let F_circuit = CubicFCircuit::<Fr>::new(());
|
|
||||
let z_0 = vec![Fr::from(3_u32)];
|
|
||||
|
|
||||
let (pedersen_len, cf_pedersen_len) =
|
|
||||
get_pedersen_params_len::<CubicFCircuit<Fr>>(&poseidon_config, F_circuit).unwrap();
|
|
||||
// generate the Pedersen params
|
|
||||
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, pedersen_len);
|
|
||||
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_pedersen_len);
|
|
||||
|
|
||||
let mut ivc = IVC::<
|
|
||||
Projective,
|
|
||||
GVar,
|
|
||||
Projective2,
|
|
||||
GVar2,
|
|
||||
CubicFCircuit<Fr>,
|
|
||||
Pedersen<Projective>,
|
|
||||
Pedersen<Projective2>,
|
|
||||
>::new(
|
|
||||
poseidon_config,
|
|
||||
pedersen_params,
|
|
||||
cf_pedersen_params,
|
|
||||
F_circuit,
|
|
||||
z_0.clone(),
|
|
||||
)
|
|
||||
.unwrap();
|
|
||||
|
|
||||
let num_steps: usize = 3;
|
|
||||
for _ in 0..num_steps {
|
|
||||
ivc.prove_step().unwrap();
|
|
||||
}
|
|
||||
|
|
||||
ivc.verify(z_0, num_steps as u32).unwrap();
|
|
||||
}
|
|
||||
}
|
|